{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 07 Interpreting two-way tables" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%%html\n", "" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pandas as pd\n", "import plotly.graph_objects as go\n", "import seaborn as sns" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import findspark\n", "\n", "findspark.init()\n", "from pyspark.context import SparkContext\n", "from pyspark.sql.session import SparkSession\n", "\n", "spark = SparkSession.builder.appName(\"statistics\").master(\"local\").getOrCreate()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[khanacademy](https://www.khanacademy.org/math/ap-statistics/analyzing-categorical-ap/stats-two-way-tables/v/interpreting-two-way-tables?modal=1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![Interpreting two-way tables fig 1](./imgs/01-06-01.png)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "dataset = {\n", " \"Candidate\": [\"Obama\", \"Romney\", \"Other\"],\n", " \"Men\": [0.42, 0.52, 0.06],\n", " \"Women\": [0.52, 0.43, 0.05],\n", "}" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
MenWomen
Candidate
Obama0.420.52
Romney0.520.43
Other0.060.05
Total1.001.00
\n", "
" ], "text/plain": [ " Men Women\n", "Candidate \n", "Obama 0.42 0.52\n", "Romney 0.52 0.43\n", "Other 0.06 0.05\n", "Total 1.00 1.00" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.DataFrame(dataset).set_index(\"Candidate\")\n", "df = df.append(df.sum().rename(\"Total\"))\n", "df" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "+---------+----+-----+\n", "|Candidate| Men|Women|\n", "+---------+----+-----+\n", "| Obama|0.42| 0.52|\n", "| Romney|0.52| 0.43|\n", "| Other|0.06| 0.05|\n", "+---------+----+-----+\n", "\n" ] } ], "source": [ "sdf = spark.createDataFrame(zip(*dataset.values()), schema=list(dataset.keys()))\n", "sdf.registerTempTable(\"sdf_table\")\n", "sdf.show()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAElCAYAAAD0sRkBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZ/ElEQVR4nO3dfZRV1Z3m8e/Di5StCC1UMpGCFO2gAYEAliLQiURtQZIF075k1LiiEiXp0WiMSZb0tJpomzaxo1lxjMbM+NLGFo0mkaVMi5OGdtKgCIIgoA0xJRTJGhQB3wAp/c0f9xRcLvVyoW5xuNvns1Yt79nn1Lm/usv1sO8+++yjiMDMzKpft7wLMDOzynCgm5klwoFuZpYIB7qZWSIc6GZmiXCgm5klokdeb9y/f/+or6/P6+3NzKrSkiVL3oiI2tb25Rbo9fX1LF68OK+3NzOrSpJea2ufh1zMzBLhQDczS4QD3cwsEbmNobdm586dNDU1sX379rxLOSjV1NRQV1dHz5498y7FzA5CB1WgNzU10bt3b+rr65GUdzkHlYhg06ZNNDU1MXjw4LzLMbODUIdDLpLukbRR0ktt7Jekn0haK2m5pDH7W8z27dvp16+fw7wVkujXr5+/vZhZm8oZQ78PmNzO/jOAIdnPDODOzhTkMG+bPxsza0+HgR4RzwBvtnPINOCfouBZoK+kT1SqwANNEhdccMGu7ebmZmpra/nCF76QY1VmZh2rxBj6AGB90XZT1van0gMlzaDQi2fQoEEdnrj+micrUN5ujTd/vsNjDjvsMF566SW2bdvGoYceytNPP82AAQMqWoeZdU6lswGgseb8ip+T726t/DnbcUCnLUbE3RHREBENtbWt3rl6UJgyZQpPPln4H+ahhx7ivPPO27Xv3XffZfr06Zx44omMHj2axx9/HID77ruPM888k8mTJzNkyBC+853v5FK7mX10VSLQNwADi7brsraqde655zJr1iy2b9/O8uXLGTt27K59N910E6eccgqLFi1i3rx5fPvb3+bdd98FYNmyZTz88MOsWLGChx9+mPXr17f1FmZmFVeJQJ8NfDmb7XISsDUi9hpuqSYjR46ksbGRhx56iClTpuyxb+7cudx8882MGjWKiRMnsn37dtatWwfAqaeeSp8+faipqWHYsGG89lqbSy6YmVVch2Pokh4CJgL9JTUB1wM9ASLiLmAOMAVYC7wHXNxVxR5IU6dO5Vvf+hbz589n06ZNu9ojgscee4xjjz12j+Ofe+45evXqtWu7e/fuNDc3H7B6zcw6DPSIOK+D/QFcVrGKDhLTp0+nb9++jBgxgvnz5+9qnzRpErfffju33347kli6dCmjR4/Or1Azs4zXcmlDXV0dV1xxxV7t1157LTt37mTkyJEcd9xxXHvttTlUZ2a2NxU62AdeQ0NDlK6Hvnr1aoYOHZpLPdXCn5HZR3vaoqQlEdHQ2j730M3MEuFANzNLhAPdzCwRDnQzs0Q40M3MEuFANzNLhAO9yFVXXcWPf/zjXduTJk3ikksu2bV99dVXc+utt+ZQmZlZxw6qR9Dt5bt9Kny+9ueETpgwgUceeYRvfOMbfPjhh7zxxhu89dZbu/YvWLCA2267rbI1mZlViHvoRcaPH8/ChQsBWLlyJcOHD6d3795s3ryZHTt2sHr1arZu3cro0aMZMWIE06dPZ8eOHQDU19czc+ZMRo0aRUNDAy+88AKTJk3i6KOP5q677tr1HrfccgsnnHACI0eO5PrrrwegsbGRoUOHcumll3Lcccdx+umns23btgP/AZhZVXOgFznqqKPo0aMH69atY8GCBYwbN46xY8eycOFCFi9ezJAhQ7jkkkt2LZHb3NzMnXfufuLeoEGDWLZsGZ/5zGe46KKLePTRR3n22Wd3BffcuXNZs2YNixYtYtmyZSxZsoRnnnkGgDVr1nDZZZexcuVK+vbty2OPPZbLZ2Bm1cuBXmL8+PEsWLBgV6CPGzdu13ZdXR2DBw/mmGOOAeDCCy/cFchQWKERYMSIEYwdO5bevXtTW1tLr1692LJlC3PnzmXu3LmMHj2aMWPG8PLLL7NmzRoABg8ezKhRowA4/vjjaWxsPKB/t5lVv4N7DD0HEyZMYMGCBaxYsYLhw4czcOBAfvSjH3HEEUcwceLEdnvOLcvnduvWbY+ldLt160ZzczMRwcyZM/nqV7+6x+81NjbutfSuh1zMbF+5h15i/PjxPPHEExx55JF0796dI488ki1btrBw4ULOOussGhsbWbt2LQAPPPAAJ598ctnnnjRpEvfccw/vvPMOABs2bGDjxo1d8neY2UePe+glRowYwRtvvMH555+/R9s777xDXV0d9957L+eccw7Nzc2ccMIJfO1rXyv73KeffjqrV69m3LhxABx++OH84he/oHv37hX/O8zso8fL51YZf0ZmXj7Xy+eamSXOgW5mlggHuplZIg66QM9rTL8a+LMxs/YcVIFeU1PDpk2bHFytiAg2bdpETU1N3qWY2UHqoJq2WFdXR1NTE6+//nrepRyUampqqKury7sMMztIHVSB3rNnTwYPHpx3GWZmVemgGnIxM7P950A3M0uEA93MLBEOdDOzRDjQzcwS4UA3M0uEA93MLBEOdDOzRJQV6JImS3pF0lpJ17Syf5CkeZKWSlouaUrlSzUzs/Z0GOiSugN3AGcAw4DzJA0rOezvgEciYjRwLvDTShdqZmbtK6eHfiKwNiJejYj3gVnAtJJjAjgie90H+GPlSjQzs3KUs5bLAGB90XYTMLbkmO8CcyV9HTgMOK0i1ZmZWdkqdVH0POC+iKgDpgAPSNrr3JJmSFosabFXVDQzq6xyAn0DMLBouy5rK/YV4BGAiFgI1AD9S08UEXdHRENENNTW1u5fxWZm1qpyAv15YIikwZIOoXDRc3bJMeuAUwEkDaUQ6O6Cm5kdQB0GekQ0A5cDTwGrKcxmWSnpBklTs8OuBi6V9CLwEHBR+LFDZmYHVFkPuIiIOcCckrbril6vAiZUtjQzM9sXvlPUzCwRDnQzs0Q40M3MEuFANzNLhAPdzCwRDnQzs0Q40M3MEuFANzNLhAPdzCwRDnQzs0Q40M3MEuFANzNLhAPdzCwRDnQzs0Q40M3MEuFANzNLhAPdzCwRDnQzs0Q40M3MEuFANzNLhAPdzCwRDnQzs0Q40M3MEuFANzNLhAPdzCwRDnQzs0Q40M3MEuFANzNLhAPdzCwRDnQzs0Q40M3MEuFANzNLRFmBLmmypFckrZV0TRvHfFHSKkkrJf1zZcs0M7OO9OjoAEndgTuAvwKagOclzY6IVUXHDAFmAhMiYrOkj3VVwWZm1rpyeugnAmsj4tWIeB+YBUwrOeZS4I6I2AwQERsrW6aZmXWknEAfAKwv2m7K2oodAxwj6d8lPStpcqUKNDOz8nQ45LIP5xkCTATqgGckjYiILcUHSZoBzAAYNGhQhd7azMygvB76BmBg0XZd1lasCZgdETsj4g/Af1AI+D1ExN0R0RARDbW1tftbs5mZtaKcQH8eGCJpsKRDgHOB2SXH/IZC7xxJ/SkMwbxauTLNzKwjHQZ6RDQDlwNPAauBRyJipaQbJE3NDnsK2CRpFTAP+HZEbOqqos3MbG9ljaFHxBxgTknbdUWvA/hm9mNmZjnwnaJmZolwoJuZJcKBbmaWCAe6mVkiHOhmZolwoJuZJcKBbmaWCAe6mVkiHOhmZolwoJuZJcKBbmaWCAe6mVkiKvWAi3R9t08XnHNr5c/ZBeqvebLi52y8+fMVP6eZFbiHbmaWCAe6mVkiHOhmZolwoJuZJcKBbmaWCAe6mVkiHOhmZolwoJuZJcKBbmaWCAe6mVkiHOhmZolwoJuZJcKBbmaWCAe6mVkiHOhmZolwoJuZJcKBbmaWCD+xyA6sj/AToMy6mnvoZmaJSKqH3iXPwKyp+CnNzLpEWT10SZMlvSJpraRr2jnuLEkhqaFyJZqZWTk6DHRJ3YE7gDOAYcB5koa1clxv4ErguUoXaWZmHSunh34isDYiXo2I94FZwLRWjrsR+AGwvYL1mZlZmcoJ9AHA+qLtpqxtF0ljgIERUflBbDMzK0unZ7lI6gbcClxdxrEzJC2WtPj111/v7FubmVmRcgJ9AzCwaLsua2vRGxgOzJfUCJwEzG7twmhE3B0RDRHRUFtbu/9Vm5nZXsoJ9OeBIZIGSzoEOBeY3bIzIrZGRP+IqI+IeuBZYGpELO6Sis3MrFUdBnpENAOXA08Bq4FHImKlpBskTe3qAs3MrDxl3VgUEXOAOSVt17Vx7MTOl2VmZvvKt/6bmSXCgW5mlggHuplZIhzoZmaJcKCbmSXCgW5mlggHuplZIhzoZmaJcKCbmSXCgW5mlggHuplZIhzoZmaJcKCbmSXCgW5mlggHuplZIhzoZmaJcKCbmSXCgW5mlggHuplZIhzoZmaJcKCbmSXCgW5mlggHuplZIhzoZmaJcKCbmSXCgW5mlggHuplZIhzoZmaJcKCbmSXCgW5mlggHuplZIhzoZmaJKCvQJU2W9IqktZKuaWX/NyWtkrRc0m8lfbLypZqZWXs6DHRJ3YE7gDOAYcB5koaVHLYUaIiIkcCjwA8rXaiZmbWvnB76icDaiHg1It4HZgHTig+IiHkR8V62+SxQV9kyzcysI+UE+gBgfdF2U9bWlq8A/7szRZmZ2b7rUcmTSboAaABObmP/DGAGwKBBgyr51mZmH3nl9NA3AAOLtuuytj1IOg3478DUiNjR2oki4u6IaIiIhtra2v2p18zM2lBOoD8PDJE0WNIhwLnA7OIDJI0GfkYhzDdWvkwzM+tIh4EeEc3A5cBTwGrgkYhYKekGSVOzw24BDgd+KWmZpNltnM7MzLpIWWPoETEHmFPSdl3R69MqXJeZme0j3ylqZpYIB7qZWSIc6GZmiXCgm5klwoFuZpYIB7qZWSIc6GZmiXCgm5klwoFuZpYIB7qZWSIc6GZmiXCgm5klwoFuZpYIB7qZWSIc6GZmiXCgm5klwoFuZpYIB7qZWSIc6GZmiXCgm5klwoFuZpYIB7qZWSIc6GZmiXCgm5klokfeBZh9FNRf82TFz9l48+crfk6rbu6hm5klwj10s2r13T5dcM6tlT+nHTDuoZuZJcKBbmaWCAe6mVkiHOhmZolwoJuZJcKBbmaWiLICXdJkSa9IWivpmlb295L0cLb/OUn1Fa/UzMza1WGgS+oO3AGcAQwDzpM0rOSwrwCbI+I/A7cBP6h0oWZm1r5yeugnAmsj4tWIeB+YBUwrOWYacH/2+lHgVEmqXJlmZtaRcu4UHQCsL9puAsa2dUxENEvaCvQD3ig+SNIMYEa2+Y6kV/an6ANJ0J+Sv6PTvvfR/bfOn2fl+LOsrCr6PD/Z1o4Deut/RNwN3H0g37OzJC2OiIa860iFP8/K8WdZWSl8nuUMuWwABhZt12VtrR4jqQfQB9hUiQLNzKw85QT688AQSYMlHQKcC8wuOWY2cGH2+mzgXyMiKlemmZl1pMMhl2xM/HLgKaA7cE9ErJR0A7A4ImYD/wt4QNJa4E0KoZ+KqhoiqgL+PCvHn2VlVf3nKXekzczS4DtFzcwS4UA3M0uEA93MLBF+BJ11OUndI+KDvOuodpK6ASdFxIK8a6lmksa0tz8iXjhQtVSaL4pal5P0KvAYcG9ErMq7nmomaWlEjM67jmomaV47uyMiTjlgxVSYA72EpJOA24GhwCEUpmq+GxFH5FpYFZPUm8JU1ospDPPdA8yKiLdyLawKSfpHYCHwK9/rYaUc6CUkLaYQPr8EGoAvA8dExMxcC0uEpJOBfwb6UljI7caIWJtrUVVE0tvAYcAHwDZAFHqV7nDsB0nDKawiW9PSFhH/lF9FneNAL9GynoOk5RExMmvz19xOyJZg/jyFHno98ADwIPAZ4PsRcUx+1dlHlaTrgYkUAn0OhSXCfxcRZ+dZV2f4ouje3suWOFgm6YfAn/BsoM5aA8wDbim5oPeopM/mVFNVypal/hIwOCJulDQQ+ERELMq5tGp0NvBpYGlEXCzp48Avcq6pU9xDLyHpk8BGoCdwFYWFxn7qYYH9J+nwiHgn7zpSIOlO4EPglIgYKunPgbkRcULOpVUdSYsi4kRJS4DPAW8DqyPiUzmXtt/cQy8REa9lL7cB38uzloQclQXRxyNiuKSRwNSI+Pu8C6tCYyNijKSlABGxOftGaftusaS+wM+BJcA7FC44Vy0PJZSQ9AVJSyW9KektSW9L8myMzvk5MBPYCRARy0lrAbcDaWd2TSIAJNVS6LHbPoqI/xYRWyLiLuCvgAsj4uK86+oMB/refkxhKeB+EXFERPT2DIJO+7NWxnibc6mk+v0E+DXwMUk3Ab8Dvp9vSdVJ0m9bXkdEY0QsL26rRh5y2dt64CXP8a2oNyQdze5e5dkULjbbPoqIB7Mx31MpTFn8LxGxOueyqoqkGuDPgP7ZNYiW58QdQeFxmlXLF0VLSDoBuBH4N2BHS3tE3JpbUVVO0l9QWGt6PLAZ+ANwQUQ05llXtcqGXD5OUYcsItblV1F1kXQl8A3gKOCPRbveAn4eEf8jj7oqwYFeQtJcChdHVlA0NhkRvkDaSZIOA7pFxNt511KtJH0duB74fxRuLmq5sWhkroVVIUlfj4jb866jkhzoJSS9FBHD864jJZJ6AWdRuKmouFd5Q141VavsqWBjI8LP7O2kbHbQ14CWeyHmAz+LiJ25FdVJvii6tzmSTs+7iMQ8DkyjcCH03aIf23frga15F5GInwLHZ/9teX1nrhV1knvoJYrWythBYZqd18roJH/r6TxJ38xeHgccCzyJr/HsF0k9smclvxgRny7Zt1dbNfEslxIR0TvvGhK0QNKIiFiRdyFVrOX/y3XZzyHZD2Szh6xsi4AxwAeSjo6I38Oui/dVvW6/A70V2VSmIey5Atsz+VVU9f4SuEjSHyj0Kn0hbx+1XJSXdE5E/LJ4n6Rz8qmqarVMU/wWMC9brx8K13iq+sYiD7mUkHQJcCVQBywDTgIWVvOi93nL1sfZS9EyC1YmSS9ExJiO2qxtkpqAliGqQyk88wCyJYmrefjKPfS9XQmcADwbEZ+T9Cl8J16nRMRr2beegez5/5wDvUySzgCmAAMk/aRo1xH4rtt91R04nN099RY92D20VZUc6HvbHhHbJSGpV0S8LOnYvIuqZpJuBC4Cfs/u8d4A/K2nfH8EFgPnAP+RtTVTmI9+VV5FVak/pTpl1oG+t6ZsBbbfAE9L2ox7kp31ReDoiHg/70Kq2CoK66AfAkzP2gYB9wJP5FVUlSrtmSfDY+jtyB6X1gf4F4fR/pP0GPA3EbEx71qqlaTbKAwTfLPlTltJRwD/SGHc98o866smko6MiDfzrqMrONBbIWkMhZkZAfx7RLyQc0lVTVIDhZuLXmLPudNTcyuqykhaQ+HZtlHS3h14OSKG5FOZHUw85FJC0nUUxil/lTXdK+mXfhhDp9wP/ICS9XFsn0RrK4BGxAeS3CszwD30vUh6Bfh0RGzPtg8FlkWEL4zuJ0nP+xFpnSPpN8CvSp9IL+kC4Iv+tmPgHnpr/kjhhqLt2XYvYEN+5STh/0r6B2A2ew65eCirfJcBv5I0ncLj0gAaKMyj/uvcqrKDinvoGUm3UxgzH0RhHvrT2a7TgEURcWZetVU7SfNaaQ7frLXvJJ1CYT0XgFURUdVP2LHKcqBnJF2YvTwU6Ekh3JspPCyaiLg/p9LMzMriQM9I6gncRGGO72sU5qq2zPP922peIzlvkvpQeChDy7rT/wbcEBFeBtasgrwe+m4/BP4cGBwRx2drY/wFhXnot+RaWfW7B3ibwg1GX6TwqK97c63ILEHuoWc8z7frSFoWEaM6ajOzznEPfbc25/ni9aY7a5ukv2zZkDSB7NqEmVWOpy3utkrSl9uY5/tyTjWl4m+A+7OxdAFvAhe2/ytmtq885JKRNIDC3aHbaGWeb0R4LnonZWuPQOF5oudGxIN51mOWGgd6Cc/zrZwswC8DBlBYy+X/ZNtXA8sjYlqO5Zklx4FuXUbS48BmYCFwKvAxCkMuV0bEshxLM0uSA926jKQVETEie90d+BMwqGWdHDOrLM9ysa6062asbLZQk8PcrOu4h25dRtIHFC6AQmGo5VDgvex1RMQRbf2ume07B7qZWSI85GJmlggHuplZIhzoVnUk/SdJsyT9XtISSXMkHdPJc9ZLeil73SDpJ20c1yipfwfn+tvO1GK2vxzoVlUkCfg1MD8ijo6I44GZwMcr9R4RsTgirujEKRzolgsHulWbzwE7I+KuloaIeBFYKum3kl6QtELSNNjV814t6eeSVkqamz0nFknHS3pR0osU7mAla58o6Ynsdb/sd1ZK+p8UZui0HPeb7BvCSkkzsrabgUMlLZP0YNZ2gaRFWdvPsjn5ZhXnQLdqM5zda+0U205hzZ0xFEL/R1lvHmAIcEdEHAdsAc7K2u8Fvh4Rn27n/a4Hfpf97q8pPPSkxfTsG0IDcIWkfhFxDbAtIkZFxJckDQX+KzAhWy74A+BL+/xXm5XBqy1aKgR8X9JngQ8prB/TMgzzh6KlBpYA9ZL6An0j4pms/QHgjFbO+1ngTICIeFLS5qJ9V0hqeUDzQAr/cGwq+f1TgeOB57N/Xw4FNu7PH2jWEQe6VZuVwNmttH8JqAWOj4idkhqBmmzfjqLjPqAQqp0iaSKFB4iPi4j3JM0ver89DgXuj4iZnX1Ps454yMWqzb8CvVrGrAEkjQQ+CWzMwvxz2XabImILsKXowRttDYM8A5yfvc8ZFB5TCIVHE27OwvxTwElFv7Mze0YtwG+BsyV9LDvHkZLarc1sfznQrapkT5X6a+C0bNriSuAfgDlAg6QVwJcp76EkFwN3SFpG0cXOEt8DPpu9z5nAuqz9X4AeklYDNwPPFv3O3cBySQ9GxCrg74C5kpYDTwOfKPsPNtsHvvXfzCwR7qGbmSXCgW5mlggHuplZIhzoZmaJcKCbmSXCgW5mlggHuplZIhzoZmaJ+P+z97LYthWY8wAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "df.plot(kind=\"bar\")" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEGCAYAAAB1iW6ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAASJklEQVR4nO3de7BdZX3G8e9jAojjnRytJcEwGqupVdQjXmux6gzgSLwL3q/5R0SrtoPW8UKtVRnrpeKFUhUdleIFG0sqWgW1VpRQEAgUjUglaCUi2FoEBH79Y63I5nDO2TtmJzv7zfczc+asy7vX+u2VdZ68Z6293pOqQpI0/W4z6QIkSeNhoEtSIwx0SWqEgS5JjTDQJakRSye142XLltXKlSsntXtJmkpnn332z6tqZr51Ewv0lStXsmHDhkntXpKmUpL/Wmidl1wkqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSI4YGepKPJLkiyQULrE+S9yXZlOS8JA8ef5mSpGFG6aF/DDh4kfWHAKv6r7XAB7e/LEnSthoa6FX1DeAXizRZA3y8OmcCd05yj3EVKEkazTieFN0XuGxgfnO/7KdzGyZZS9eLZ7/99hvDriVNo0+94SmTLmGinv3WU3bIdnfqTdGqOr6qZqtqdmZm3qEIJEm/o3EE+uXAioH55f0ySdJONI5AXwc8v/+0y8OBX1bVrS63SJJ2rKHX0JN8GjgIWJZkM/AmYA+AqvoQsB44FNgEXAO8aEcVK0la2NBAr6ojhqwv4OVjq0iS9DvxSVFJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSI0YK9CQHJ7k4yaYkR8+zfr8kpyc5J8l5SQ4df6mSpMUMDfQkS4DjgEOA1cARSVbPafYG4OSqehBwOPCBcRcqSVrcKD30A4FNVXVJVV0PnASsmdOmgDv203cCfjK+EiVJoxgl0PcFLhuY39wvG/Rm4LlJNgPrgVfMt6Eka5NsSLJhy5Ytv0O5kqSFjOum6BHAx6pqOXAo8Ikkt9p2VR1fVbNVNTszMzOmXUuSYLRAvxxYMTC/vF826CXAyQBV9W3gtsCycRQoSRrNKIF+FrAqyf5J9qS76bluTpsfA48DSHI/ukD3mook7URDA72qbgCOBE4DLqL7NMvGJMckOaxv9hrgZUm+B3waeGFV1Y4qWpJ0a0tHaVRV6+ludg4ue+PA9IXAo8ZbmiRpW/ikqCQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRIwV6koOTXJxkU5KjF2jzzCQXJtmY5FPjLVOSNMzSYQ2SLAGOA54AbAbOSrKuqi4caLMKeB3wqKq6KsnddlTBkqT5jdJDPxDYVFWXVNX1wEnAmjltXgYcV1VXAVTVFeMtU5I0zCiBvi9w2cD85n7ZoPsA90nyrSRnJjl4XAVKkkYz9JLLNmxnFXAQsBz4RpI/qqqrBxslWQusBdhvv/3GtGtJEozWQ78cWDEwv7xfNmgzsK6qflNVPwK+Txfwt1BVx1fVbFXNzszM/K41S5LmMUqgnwWsSrJ/kj2Bw4F1c9p8ga53TpJldJdgLhlfmZKkYYYGelXdABwJnAZcBJxcVRuTHJPksL7ZacCVSS4ETgf+vKqu3FFFS5JubaRr6FW1Hlg/Z9kbB6YLeHX/JUmaAJ8UlaRGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGjGu8dB3ri++ctIVTNaT3rtdL1959KljKmQ6Xfr2J066BGmHsIcuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakR0/kn6LRd3rb0hEmXMGH+CTq1yR66JDViKnvon/rOjyddwkQ9+0mTrkDSrmikHnqSg5NcnGRTkqMXafe0JJVkdnwlSpJGMTTQkywBjgMOAVYDRyRZPU+7OwCvBL4z7iIlScON0kM/ENhUVZdU1fXAScCaedr9FfAO4Nox1idJGtEogb4vcNnA/OZ+2W8leTCwoqpOXWxDSdYm2ZBkw5YtW7a5WEnSwrb7Uy5JbgP8LfCaYW2r6viqmq2q2ZmZme3dtSRpwCiBfjmwYmB+eb9sqzsA9wfOSHIp8HBgnTdGJWnnGiXQzwJWJdk/yZ7A4cC6rSur6pdVtayqVlbVSuBM4LCq2rBDKpYkzWtooFfVDcCRwGnARcDJVbUxyTFJDtvRBUqSRjPSg0VVtR5YP2fZGxdoe9D2lyVJ2lY++i9JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqxEiBnuTgJBcn2ZTk6HnWvzrJhUnOS/LVJPccf6mSpMUMDfQkS4DjgEOA1cARSVbPaXYOMFtVDwA+C7xz3IVKkhY3Sg/9QGBTVV1SVdcDJwFrBhtU1elVdU0/eyawfLxlSpKGGSXQ9wUuG5jf3C9byEuAf5lvRZK1STYk2bBly5bRq5QkDTXWm6JJngvMAsfOt76qjq+q2aqanZmZGeeuJWm3t3SENpcDKwbml/fLbiHJ44G/BP6kqq4bT3mSpFGN0kM/C1iVZP8kewKHA+sGGyR5EPBh4LCqumL8ZUqShhka6FV1A3AkcBpwEXByVW1MckySw/pmxwK3Bz6T5Nwk6xbYnCRpBxnlkgtVtR5YP2fZGwemHz/muiRJ28gnRSWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqxNJJFyBNm5VHnzrpEibu0rc/cdIlaB720CWpEfbQpW30tqUnTLqEXYA99F2RPXRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhoxUqAnOTjJxUk2JTl6nvV7JfnHfv13kqwce6WSpEUNDfQkS4DjgEOA1cARSVbPafYS4KqqujfwbuAd4y5UkrS4UXroBwKbquqSqroeOAlYM6fNGuDEfvqzwOOSZHxlSpKGSVUt3iB5OnBwVb20n38e8LCqOnKgzQV9m839/A/7Nj+fs621wNp+9g+Ai8f1RnayZcDPh7bSQjx+289juH2m+fjds6pm5luxU8dyqarjgeN35j53hCQbqmp20nVMK4/f9vMYbp9Wj98ol1wuB1YMzC/vl83bJslS4E7AleMoUJI0mlEC/SxgVZL9k+wJHA6sm9NmHfCCfvrpwNdq2LUcSdJYDb3kUlU3JDkSOA1YAnykqjYmOQbYUFXrgH8APpFkE/ALutBv2dRfNpowj9/28xhunyaP39CbopKk6eCTopLUCANdkhqxWwZ6kuVJ/inJD5L8MMl7k+yZ5IVJ3j/p+nZFSW5Mcm6SC5J8McmdJ11TKxY5Hw9IcuhAuzcnee0ka91VJdmnPz/PTfLfSS4fmN9zTttXJbndCNs8I8lUfbRxtwv0/gnWzwNfqKpVwH2A2wN/PdHCdn2/rqoDqur+dDe+Xz7pglow5Hw8ADh04Vdv876WjGtbu5qqurI/Pw8APgS8e+t8/4T7oFcBQwN9Gu12gQ78KXBtVX0UoKpuBP4MeDHdP/KK/n/mHyR509YXJflCkrOTbOyfeN26/FdJju2X/2uSA/vXX5LksL7NyiTfTPIf/dcjd+o7Hr9vA/sC9L3IM5Ocl+SUJHfpl5+R5N1JNiS5KMlDk3y+P65v7dus7Nf9fX/8vpxk737dvZJ8qT/m30xy3yR3SPKjJHv0be44OD+lFjofXwq8E3hW38t8Vt9+9cD5ddTWjSR5bpLv9m0/vDW8+/PzXUm+Bzxip76zCUvyuCTnJDk/yUfSDSJ4FPD7wOlJTu/bfbA/Tzcmectkq95OVbVbfQFH0f3vPXf5Of26nwL7AHsDFwCz/fq79t+3Lt+nny/gkH76FODLwB7AA4Fz++W3A27bT6+i+7jnxI/FNh63X/XflwCfoRvqAeA84E/66WOA9/TTZwDv6KdfCfwEuAewF7C5P8YrgRuAA/p2JwPP7ae/Cqzqpx9G92wDwEeBJ/fTa4F3TfrY7ODz8f0Dy94M/Ht/DJfRPby3B3A/4IvAHn27DwDPHzg/nznp97mTj+mbgTcAlwH36Zd9HHhVP30psGyg/daf7SX9efuAgXN4dtLvZ1u+duqj/1PiK1V1JUCSzwOPBjYARyV5St9mBV0wXwlcD3ypX34+cF1V/SbJ+XSBBd0P3fuTHADcSPdr9bTZO8m5dD3zi4CvJLkTcOeq+nrf5kS6sN9q6wNo5wMbq+qnAEkuoTuGVwM/qqpz+3ZnAyuT3B54JPCZ3DzG21799xOAvwC+ALwIeNnY3uF0OLWqrgOuS3IFcHfgccBDgLP647U3cEXf/kbgc5ModMKW0J1b3+/nT6S7TPieedo+s/+teyldp2M1XUdl6uyOgX4h3dOsv5XkjsB+dL3FuR/MryQHAY8HHlFV1yQ5A7htv/431f93DtwEXAdQVTelGwYBul+hf0bXa78NcO0Y38/O8uuqOqC/mXQa3Q/HiUNec13//aaB6a3zS+e0gS589qY7RldXdz30FqrqW/2lmoOAJVV1wTa+j13NsPNxrrnHaykQ4MSqet087a+t7jKO5pFkf+C1wEOr6qokH+Pmn+2pszteQ/8qcLskz4ff3ih6F/Ax4BrgCUnu2l/LfTLwLbqxaa7qw/y+wMO3cZ93An5aVTcBz6PrPUylqrqG7lLAa4D/A65K8sf96ucBX1/otduwj/8BfpTkGdDdOEzywIEmHwc+RXf5Zdotdj7+DLjDiNt4epK79du4a5J77phyp8aNdL/t3bufHzw3/5ebj+sd6c7jXya5O93ffZhau12g973ppwDPSPID4Pt0PebX902+S/cr6nnA56pqA90llaVJLgLeDpy5jbv9APCC/sbUfelOoKlVVefQHZ8j6MbwOTbJeXSfyjhmTLt5DvCS/pht5JZj8H8SuAvw6THta2KGnI+n090EHbwpOt82LqS7Zvzl/t/hK3SXDnZn19JdkvtMf/nzJrpPv0D32P+XkpxeVd+ju1/xn3SdhG9Nothx8dF/TZ10Y/SvqarnTboWaVeyO15D1xRL8nd0vxaP7fPZUivsoUtSI3a7a+iS1CoDXZIaYaBLUiMMdE2dJL+X5KR0IxOenWR9ku16+rZ/WOmCfno2yfsWaHdpkmVDtvX6xdZLO4qBrqmS7tn2U4AzqupeVfUQ4HV0j8CPRVVtqKqjhrdckIGuiTDQNW0eSzfcwtaHRNj6cEiSr/ajWZ6fZA0MHdHxIUm+1z+89NvhgJMclOSf++l9+tdsTHIC3WP2W9vdagTOJG+nH/cmySf7ZfOOhCiNm4GuaXN/ukG85roWeEpVPZgu9N+Vm0f2WgUcV1V/SDcg2NP65R8FXlFVD5y7sQFvAv6tf+0pdGOsbPXi/jeEWbrB2/apqqO5eez45yS5H/As4FH92DQ30j0FK42dDxapFQHeluQxdI9578vNl2HmG9HxznQjRX6jX/4J5h/H4zHAUwGq6tQkVw2sW2gEzkGLjYQojZWBrmmzkTmjE/aeA8wAD+mHL76Um0fNm29Ex+0yZATOWzRl4ZEQpbHykoumzdeAvXLLvxr1AOCewBV9mD+2n19QVV0NXJ3k0f2ihS6DfAN4dr+fQ+gGBYPFR+D8TW7+K0qOhKidxkDXVBkYnfDx/ccWNwJ/A6wHZvuR9Z5PN3reMC8Cjuv/cEcWaPMW4DH9fp4K/LhfvtgInMcD5yX5pCMhamdyLBdJaoQ9dElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGvH/IdnpBj9NLOgAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.bar(df.index, df[\"Men\"])\n", "plt.bar(df.index, df[\"Women\"], alpha=0.6)\n", "plt.xlabel(\"Candidate\")\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
CandidateGenderPercentage
0ObamaMen0.42
1RomneyMen0.52
2OtherMen0.06
3TotalMen1.00
4ObamaWomen0.52
5RomneyWomen0.43
6OtherWomen0.05
7TotalWomen1.00
\n", "
" ], "text/plain": [ " Candidate Gender Percentage\n", "0 Obama Men 0.42\n", "1 Romney Men 0.52\n", "2 Other Men 0.06\n", "3 Total Men 1.00\n", "4 Obama Women 0.52\n", "5 Romney Women 0.43\n", "6 Other Women 0.05\n", "7 Total Women 1.00" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "melt_df = df.reset_index().melt(\n", " id_vars=\"Candidate\", var_name=\"Gender\", value_name=\"Percentage\"\n", ")\n", "melt_df" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAAFuCAYAAAACplYMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcXElEQVR4nO3de5QlZX3u8e+TGUAMtwiTywHGITpGURRlggI5BqNxDeYc0GgUvBAvkZNEIEYlMclZiOQux0s0GEWjQA5KNBFDlMMlKiZBCQyCDANBRzAwSAQUUIPcf+ePqpZN29O9Z6Zruvvt72etXl2Xd1f9dq0983TVrnrfVBWSJLXkR+a6AEmSZpvhJklqjuEmSWqO4SZJao7hJklqztK5LmBTrV69us4999y5LkOShpa5LmAhW3BnbrfddttclyBJmucWXLhJkjQTw02S1BzDTZLUHMNNktQcw02S1BzDTZLUHMNNktQcw02S1BzDTZLUHMNNktQcw02S1JzBwi3Jh5LckuSqjaxPkncnWZ/kyiRPG6oWSdLiMuSZ26nA6mnWHwKs7H+OAv5qwFokSYvIYOFWVf8MfHuaJocBp1fnYmCXJD81VD2SpMVjLsdz2x24cWR+Q7/s5skNkxxFd3bH8uXLt0pxkoa333Gnz+n+z9rxpDnb9/Lj187ZvheDBXFDSVWdUlWrqmrVsmXL5rocSdI8N5fhdhOw58j8Hv0ySZK2yFyG29nAkf1dk88A7qyqH7okKUnSphrsO7ckHwUOBnZLsgF4C7ANQFW9DzgHeB6wHrgLeNVQtUiSFpfBwq2qjphhfQGvG2r/kqTFa0HcUCJJ0qYw3CRJzTHcJEnNMdwkSc0x3CRJzTHcJEnNMdwkSc0x3CRJzTHcJEnNMdwkSc0x3CRJzTHcJEnNMdwkSc0x3CRJzTHcJEnNMdwkSc0x3CRJzTHcJEnNMdwkSc0x3CRJzTHcJEnNMdwkSc0x3CRJzTHcJEnNMdwkSc0x3CRJzTHcJEnNMdwkSc0x3CRJzTHcJEnNMdwkSc0x3CRJzTHcJEnNMdwkSc0x3CRJzTHcJEnNMdwkSc0x3CRJzTHcJEnNMdwkSc0x3CRJzTHcJEnNMdwkSc0x3CRJzTHcJEnNMdwkSc0x3CRJzTHcJEnNMdwkSc0x3CRJzTHcJEnNMdwkSc0ZNNySrE5ybZL1Sd48xfrlST6X5PIkVyZ53pD1SJIWh8HCLckS4GTgEGBv4Igke09q9r+Bj1XVU4HDgfcOVY8kafEY8sxtf2B9VV1XVfcCZwKHTWpTwE799M7ANwasR5K0SAwZbrsDN47Mb+iXjToBeHmSDcA5wDFTbSjJUUnWJFlz6623DlGrJKkhc31DyRHAqVW1B/A84G+S/FBNVXVKVa2qqlXLli3b6kVKkhaWIcPtJmDPkfk9+mWjXgN8DKCqvgg8AthtwJokSYvAkOF2KbAyyV5JtqW7YeTsSW1uAJ4NkOQJdOHmdUdJ0hYZLNyq6n7gaOA84Bq6uyLXJTkxyaF9szcCr03yZeCjwCurqoaqSZK0OCwdcuNVdQ7djSKjy44fmb4aOGjIGiRJi89c31AiSdKsM9wkSc0x3CRJzTHcJEnNMdwkSc0x3CRJzTHcJEnNMdwkSc0x3CRJzTHcJEnNMdwkSc0x3CRJzTHcJEnNMdwkSc0x3CRJzTHcJEnNMdwkSc0x3CRJzTHcJEnNMdwkSc0x3CRJzTHcJEnNMdwkSc0x3CRJzTHcJEnNMdwkSc0x3CRJzTHcJEnNMdwkSc0x3CRJzTHcJEnNMdwkSc0x3CRJzTHcJEnNMdwkSc0x3CRJzTHcJEnNMdwkSc0x3CRJzTHcJEnNMdwkSc0x3CRJzTHcJEnNMdwkSc0x3CRJzTHcJEnNMdwkSc0x3CRJzTHcJEnNMdwkSc0x3CRJzTHcJEnNGTTckqxOcm2S9UnevJE2L05ydZJ1ST4yZD2SpMVh6TiNkgR4GfDTVXVikuXAT1bVJdO8ZglwMvCLwAbg0iRnV9XVI21WAr8HHFRVtyf58S14L5IkAeOfub0XOAA4op//Ll1wTWd/YH1VXVdV9wJnAodNavNa4OSquh2gqm4Zsx5JkjZq3HB7elW9DrgboA+jbWd4ze7AjSPzG/plox4HPC7JRUkuTrJ6qg0lOSrJmiRrbr311jFLliQtVuOG2339ZcYCSLIMeHAW9r8UWAkcTHdW+IEku0xuVFWnVNWqqlq1bNmyWditJKll44bbu4GzgB9P8sfAvwJ/MsNrbgL2HJnfo182agNwdlXdV1XXA1+hCztJkjbbWDeUVNUZSS4Dng0EeH5VXTPDyy4FVibZiy7UDgdeOqnNJ+nO2D6cZDe6y5TXjV++JEk/bNy7JR8F3AJ8dGTZNlV138ZeU1X3JzkaOA9YAnyoqtYlORFYU1Vn9+uem+Rq4AHguKr61ua/HUmSxgw34Et0lxhvpztz2wX4zyTfBF5bVZdN9aKqOgc4Z9Ky40emC3hD/yNJ0qwY9zu3C4DnVdVuVbUrcAjwKeA36R4TkCRp3hg33J5RVedNzFTV+cABVXUxsN0glUmStJnGvSx5c5LfpXsQG+AlwDf7xwNm45EASZJmzbhnbi+lu5X/k/3P8n7ZEuDFQxQmSdLmGvdRgNuAYzayev3slSNJ0pYb91GAZcDvAE8EHjGxvKp+YaC6JEnabONeljwD+HdgL+CtwNfpHtKWJGneGTfcdq2qvwbuq6rPV9WrAc/aJEnz0rh3S070RHJzkl8CvgE8apiSJEnaMuOG2x8l2Rl4I/AeYCfg9UMVJUnSlhg33G6vqjuBO4FnASQ5aLCqJEnaAuN+5/aeMZdJkjTnpj1zS3IAcCCwLMlo58Y70T3ALUnSvDPTmdu2wA50IbjjyM93gBcNW5okaTYl+YkkH0lyXZLLknwxyQtmYbsHJ/nUbNQ4W6Y9c6uqzwOfT3JqVf3HVqpJkjTLkoSu+8TTquql/bJHA4fOQS1Lq+r+Ifcx7g0l2yU5BVgx+hp7KJGkBeMXgHur6n0TC/qTlvf0neD/GXAw3UgvJ1fV+5McDJwA3AY8CbgMeHlVVZLVwLuAu4B/ndhmkh+luyfjScA2wAlV9Q9JXgn8Mt3VwCXAzw/3VscPt48D7wM+SDditiRpYXki3cDTU3kNcGdV/WyS7YCLkpzfr3tq/9pvABcBByVZA3yALjDXA387sq0/AD5bVa9OsgtwSZJ/6tc9DXhyVX17Ft/XlMYNt/ur6q8GrUSStNUkORn4OeBe4D+AJyeZuJdiZ2Blv+6SqtrQv+YKuit43wOur6qv9sv/L3BU/9rnAocmeVM//wi6kWQALtgawQbjh9s/JvlN4CzgnomFW6tISdIWWwe8cGKmql6XZDdgDXADcMzooNTQ3SjCyP/5dFfuZsqNAC+sqmsnbevpwH9tbvGbatxw+9X+93Ejywr46dktZ2G74cR95nT/y49fu0Wv3++402epkk132UlHztm+pUXis8CfJPmNkStxj+x/nwf8RpLPVtV9SR4H3DTNtv4dWJHkMVX1NeCIkXXnAcckOab/bu6pVXX5bL+ZmYw7ntteQxciSRpOHzTPB96Z5HeAW+nOpH6X7r6KFcCX+rsqbwWeP8227k5yFPDpJHcB/0L3mBjAH9LdaHJlkh8Brgf+xwBvaVrjjuf2SOANwPKqOirJSuBnqmpePdcgSdq4qroZOHwjq3+//xl1Yf8z8fqjR6bPBR4/xT6+D/yvKZafCpy6aRVvvnG73/ow3ReLB/bzNwF/NEhFkiRtoXHD7TFV9Tb6oW+q6i66Lw0lSZp3xg23e5NsT3cTCUkew8PvoJEkad4Y927JtwDnAnsmOQM4CHjlUEVJkrQlxr1b8oIkXwKeQXc58req6rZBK5MkaTONdVmy7zX6/qr6dH+H5P39LaWSJM07437n9pZ+JG4AquoOukuVkqTGJam+i62J+aVJbp1vw9yMGvc7t6lCcNzXSpJmyX7HnV6zub3LTjpynDvf/wt4UpLt++fYfpHpezCZc+Oeua1J8o4kj+l/3kE39IEkaXE4B/ilfvoI4KMTK5L8aJIPJbkkyeVJDuuXvzLJJ5Kcm+SrSd62tYodN9yOoXuI+2+BM4G7gdcNVZQkad45Ezg8ySOAJwP/NrJuYpib/YFnASf147oB7Au8BNgHeEmSPbdGsTNeWuwHsftUVT1rK9QjSZqHqurKJCvoztrOmbR6umFuPjNxz0aSq4FHAzcOXe+M4VZVDyR5MMnOozeVSJIWnbOB/0M3YveuI8unG+ZmU4fMmRXj7uR7wNokFzAyHk9VHTtIVZKk+ehDwB1VtbYf623CvBjmZtS44faJ/keStEj1I3K/e4pV82KYm1Hj9lByWt+35PLJp52SpK1nzFv3Z1VV7TDFsgvph8MZd5ibqtpqgTduDyX/E7iCrn9Jkuyb5OwB65IkabON+yjACcD+wB0AVXUF8NODVCRJ0hYaN9zum+JOyQdnuxhJkmbDuDeUrEvyUmBJkpXAscAXhitLkqTNtyk9lDyR7nmFjwB3Aq8fqCZJkrbItGdufTcrvw48FlgLHFBV92+NwiRJ2lwznbmdBqyiC7ZD6J5MlyQtEknemeT1I/PnJfngyPzbk7xhToqbxkzfue1dVfsAJPlr4JLhS5IkbcwNJ+4zq0PeLD9+7UzPzV0EvBh4V/+A9m7ATiPrDwR+ezZrmg0znbndNzHh5UhJWpS+ABzQTz8RuAr4bpIfS7Id8ARg536om7X90DfbAST5epI/TXJFkjVJntaf+X0tya9P7CDJcUkuTXJlkrf2y1YkuSbJB5KsS3J+35nIWGY6c3tKku9M7B/Yvp8PUFW108ZfKo3vhhP3mdP9Lz9+7ZzuX5qvquobSe5PspzuLO2LwO50gXcn8FXgg8Czq+orSU4HfoOuOy6AG6pq3yTvpOut5CC6UQOuAt6X5LnASrpnqQOcneSZwA398iOq6rVJPga8EPjBiODTmTbcqmrJmO9fktSuL9AF24HAO+jC7UC6cNsAfL+qvtK3PY1uvM939fMTvVmtBXaoqu/Snfndk2QXuuFyngtMdLS8A12o3QBc33caAt0A2SvGLXirDD0gSVrQLqILs33ozrhuBN4IfIeuf8kXTvPaiSFvHuThw988SJdBAf60qt4/+qJ+7LjJw+XM2mXJBWe/406fs32fteOc7VqShvQF4E3AdVX1APDt/qzriXTPQb8xyWOraj3wCuDzm7Dt84A/THJGVX0vye6M3O+xuZoLN0nSrFtLd5fkRyYt26GqNiR5FfDxJEuBS4H3jbvhqjo/yROALyaBbvzQl9OdqW02w02SFpAxbt2fdf3Z2k6Tlr1yZPozwFOneN2KkelTefjwN6Pr/gL4iyl2/aSRNpv0nPW43W9tliSrk1ybZH2SN0/T7oVJKsmqIeuRJC0Og4VbkiXAyXQ9m+wNHJFk7yna7Qj8FvBvQ9UiSVpchjxz2x9YX1XXVdW9wJnAYVO0+0Pgz4G7B6xFkrSIDBluu9PdLjphQ7/sB5I8Ddizqj493YaSHNU/3b7m1ltvnf1KJUlNGfQ7t+n0fZS9g+5ZiWlV1SlVtaqqVi1btmz44iRJC9qQ4XYTsOfI/B79sgk70t0Jc2GSrwPPoOt2xZtKJElbZMhwuxRYmWSvJNsCh/NQNyxU1Z1VtVtVrehvCb0YOLSq1gxYkyRpERgs3PpRBI6me/r8GuBjVbUuyYlJDh1qv5IkDfoQd1WdA5wzadnxG2l78JC1SJIWjzm7oUSSpKEYbpKk5hhukqTmGG6SpOYYbpKk5hhukqTmGG6SpOYYbpKk5hhukqTmGG6SpOYYbpKk5hhukqTmGG6SpOYYbpKk5hhukqTmGG6SpOYYbpKk5hhukqTmGG6SpOYYbpKk5hhukqTmGG6SpOYYbpKk5hhukqTmGG6SpOYYbpKk5hhukqTmGG6SpOYYbpKk5hhukqTmGG6SpOYYbpKk5hhukqTmGG6SpOYYbpKk5hhukqTmGG6SpOYYbpKk5hhukqTmGG6SpOYYbpKk5hhukqTmGG6SpOYYbpKk5hhukqTmGG6SpOYYbpKk5hhukqTmGG6SpOYYbpKk5hhukqTmGG6SpOYMGm5JVie5Nsn6JG+eYv0bklyd5Mokn0ny6CHrkSQtDoOFW5IlwMnAIcDewBFJ9p7U7HJgVVU9Gfg74G1D1SNJWjyGPHPbH1hfVddV1b3AmcBhow2q6nNVdVc/ezGwx4D1SJIWiSHDbXfgxpH5Df2yjXkN8P8GrEeStEgsnesCAJK8HFgF/PxG1h8FHAWwfPnyrViZJGkhGvLM7SZgz5H5PfplD5PkOcAfAIdW1T1TbaiqTqmqVVW1atmyZYMUK0lqx5DhdimwMsleSbYFDgfOHm2Q5KnA++mC7ZYBa5EkLSKDhVtV3Q8cDZwHXAN8rKrWJTkxyaF9s5OAHYCPJ7kiydkb2ZwkSWMb9Du3qjoHOGfSsuNHpp8z5P4lSYuTPZRIkppjuEmSmmO4SZKaY7hJkppjuEmSmmO4SZKaY7hJkppjuEmSmmO4SZKaY7hJkppjuEmSmmO4SZKaY7hJkppjuEmSmmO4SZKaY7hJkppjuEmSmmO4SZKaY7hJkppjuEmSmmO4SZKaY7hJkppjuEmSmmO4SZKaY7hJkppjuEmSmmO4SZKaY7hJkppjuEmSmmO4SZKaY7hJkppjuEmSmmO4SZKaY7hJkppjuEmSmmO4SZKaY7hJkpqzdK4LkFqw33Gnz9m+LzvpyDnbtzRfeeYmSWqO4SZJao6XJaUF7oYT95nT/S8/fu2c7l+aimdukqTmGG6SpOYYbpKk5hhukqTmGG6SpOYYbpKk5hhukqTmGG6SpOYYbpKk5hhukqTmGG6SpOYYbpKk5gwabklWJ7k2yfokb55i/XZJ/rZf/29JVgxZjyRpcRgs3JIsAU4GDgH2Bo5IsvekZq8Bbq+qxwLvBP58qHokSYvHkGdu+wPrq+q6qroXOBM4bFKbw4DT+um/A56dJAPWJElaBFJVw2w4eRGwuqp+rZ9/BfD0qjp6pM1VfZsN/fzX+ja3TdrWUcBR/ezPANcOUvSW2w24bcZWmorHbvN57DbffD52t1XV6rkuYqFaEIOVVtUpwClzXcdMkqypqlVzXcdC5LHbfB67zeexa9eQlyVvAvYcmd+jXzZlmyRLgZ2Bbw1YkyRpERgy3C4FVibZK8m2wOHA2ZPanA38aj/9IuCzNdR1UknSojHYZcmquj/J0cB5wBLgQ1W1LsmJwJqqOhv4a+BvkqwHvk0XgAvZvL90Oo957Dafx27zeewaNdgNJZIkzRV7KJEkNcdwkyQ1x3AbkWSPJP+Q5KtJvpbkL5Jsm+SVSf5yruubb5I8kOSKJFcl+ccku8x1TQvdNJ/BfZM8b6TdCUneNJe1zkdJdu0/k1ck+c8kN43Mbzup7euTPHKMbV6YxMcFFhjDrdf3jPIJ4JNVtRJ4HLAD8MdzWtj89v2q2reqnkR3Q9Dr5rqghWyGz+C+wPM2/upN3teS2drWfFJV3+o/k/sC7wPeOTHf95Q06vXAjOGmhclwe8gvAHdX1YcBquoB4LeBV9P9A9iz/wvuq0neMvGiJJ9MclmSdX1PKhPLv5fkpH75PyXZv3/9dUkO7dusSPIvSb7U/xy4Vd/x7PoisDtAf5ZxcZIrk5yV5Mf65RcmeWeSNUmuSfKzST7RH9M/6tus6Nd9oD925yfZvl/3mCTn9sf7X5I8PsmOSa5Psk3fZqfR+QVmY5/BXwPeBrykPwN5Sd9+75HP1LETG0ny8iSX9G3fPxFk/Wfy7Um+DBywVd/ZHEry7CSXJ1mb5EPpOmw/FvhvwOeSfK5v91f9Z3NdkrfObdXaYlXlT3fH6LF0f+VNXn55v+5mYFdge+AqYFW//lH974nlu/bzBRzST58FnA9sAzwFuKJf/kjgEf30SrpHJOb8WGzCMfte/3sJ8HG6rtQArgR+vp8+EXhXP30h8Of99G8B3wB+CtgO2NAf3xXA/cC+fbuPAS/vpz8DrOynn073XCTAh4Hn99NHAW+f62Mz0GfwL0eWnQB8oT92u9F1frAN8ATgH4Ft+nbvBY4c+Uy+eK7f51Y8nicA/xu4EXhcv+x04PX99NeB3UbaT/xbXtJ/Vp888rldNdfvx59N+1kQ3W/NExdU1bcAknwC+DlgDXBskhf0bfakC6lvAfcC5/bL1wL3VNV9SdbS/QcO3X9Gf5lkX+ABustQC8n2Sa6gO2O7Brggyc7ALlX1+b7NaXTBN2HiQf61wLqquhkgyXV0x+8O4PqquqJvdxmwIskOwIHAx/NQ39rb9b8/CPwO8EngVcBrZ+0dzm+frqp7gHuS3AL8BPBsYD/g0v44bQ/c0rd/APj7uSh0Di2h+zx9pZ8/je7y+bumaPvi/urLUro/uvam+0NNC5Dh9pCr6XpJ+YEkOwHL6c4kJj8QWEkOBp4DHFBVdyW5EHhEv/6+6v/sAx4E7gGoqgfTdTUG3SWnb9Kdzf0IcPcsvp+t4ftVtW//pfx5dP9pnDbDa+7pfz84Mj0xv3RSG+j+Q96e7vjcUd13KQ9TVRf1lzMPBpZU1VWb+D7mi5k+g5NNPk5LgQCnVdXvTdH+7uoudWqSJHsBbwJ+tqpuT3IqD/1b1gLkd24P+QzwyCRHwg++cH87cCpwF/CLSR7Vf//zfOAiur4wb++D7fHAMzZxnzsDN1fVg8Ar6P7KXHCq6i66y2ZvBP4LuD3Jf+9XvwL4/MZeuwn7+A5wfZJfge7miyRPGWlyOvARukuUC9V0n8FvAjuOuY0XJfnxfhuPSvLoYcpdEB6gO/N/bD8/+nn8Lg8d053oPrt3JvkJunEotYAZbr3+LOsFwK8k+SrwFbozqd/vm1xCd0nnSuDvq2oN3WXHpUmuAf4MuHgTd/te4Ff7L/gfT/ePa0Gqqsvpjs0RdP2FnpTkSrq7/E6cpd28DHhNf7zW8fDxAc8Afgz46Czta6ub4TP4ObobSEZvKJlqG1fTfc90fn/8L6C7xLZY3U13qfrj/VcCD9LdRQld11vnJvlcVX2Z7rvNf6f7I+miuShWs8fut9SEdOMHHlZVr5jrWiTNPb9z04KX5D10l5Fm7TkwSQubZ26SpOb4nZskqTmGmySpOYabJKk5hpuakOQnk5yZrif9y5Kck2SLenzpHwy/qp9eleTdG2n39SS7zbCt359uvaTZZbhpwUvXz9RZwIVV9Ziq2g/4PbruqGZFVa2pqmNnbrlRhpu0FRluasGz6Lo7m3g4l4mHcpN8ph9xYW2Sw2DGkQf2S/Ll/kHxHwzhk+TgJJ/qp3ftX7MuyQfpuryaaPdDo0Qk+TP6fjiTnNEvm7Lnfkmzw3BTC55E18HyZHcDL6iqp9EF4NvzUK/LK4GTq+qJdJ01v7Bf/mHgmKp6yuSNjXgL8K/9a8+i6/txwqv7M8dVdJ1q71pVb+ahse9eluQJwEuAg/q+Mh+g631F0izxIW61LMCfJHkmXbdLu/PQpcqpRh7YhW5Eg3/ul/8NU/cx+EzglwGq6tNJbh9Zt7FRIkZN13O/pFlguKkF65jUm37vZcAyYL9+uKGv81BP71ONPLBFZhgl4mFN2XjP/ZJmgZcl1YLPAtvl4SOhPxl4NHBLH2zP6uc3qqruAO5I8nP9oo1dKvxn4KX9fg6h67AZph8l4r48NDq4PfdLAzPctOCN9Kb/nP5RgHXAnwLnAKv63uCPpOvxfSavAk7uB2HNRtq8FXhmv59fBm7ol083SsQpwJVJzrDnfml49i0pSWqOZ26SpOYYbpKk5hhukqTmGG6SpOYYbpKk5hhukqTmGG6SpOb8fw2sg9xT0rdJAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sns.catplot(x=\"Candidate\", y=\"Percentage\", hue=\"Gender\", data=melt_df, kind=\"bar\")\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "marker": { "color": "cornflowerblue" }, "name": "Men", "type": "bar", "x": [ "Obama", "Romney", "Other", "Total" ], "y": [ 0.42, 0.52, 0.06, 1 ] }, { "marker": { "color": "orange" }, "name": "Women", "type": "bar", "x": [ "Obama", "Romney", "Other", "Total" ], "y": [ 0.52, 0.43, 0.05, 1 ] } ], "layout": { "autosize": true, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "xaxis": { "autorange": true, "range": [ -0.5, 3.5 ], "type": "category" }, "yaxis": { "autorange": true, "range": [ 0, 1.0526315789473684 ], "type": "linear" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4EAAAHCCAYAAABR+cwnAAAgAElEQVR4Xu3df7DdZX3g8SdEw0WNSPlpgJVCXUErWN0oU8potyxdYNzusmZLa7drUVGZ7YiITMwU/sAZTBEZ2t3iD35pWx00Lm3HgepWLYWqESorWirtKgVEBBECpJAYCdn5HvfcOTm5N/d58pzz3HPu55WZDkKe53zP9/V87u1955x7s2zHjh07kl8ECBAgQIAAAQIECBAgEEJgmQgMcc5ukgABAgQIECBAgAABAj0BEWgQCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEWgGCBAgQIAAAQIECBAgEEhABAY6bLdKgAABAgQIECBAgAABEVg5Aw88sqXyEWwnQIAAAQIECBAgMNkCq/bfZ7KfoGdXJCACi7h2XSwCKwFtJ0CAAAECBAgQmHgBETjxR1T0BEVgEZcIrOSynQABAgQIECBAYAoFROAUHtpunrIIrDxPrwRWAtpOgAABAgQIECAw8QIicOKPqOgJisAiLq8EVnLZToAAAQIECBAgMIUCInAKD80rgeM7NK8Ejs/WIxMgQIAAAQIECEyGgAicjHMY1bPwSmClpAisBLSdAAECBAgQIEBg4gVE4MQfUdETFIFFXLsuFoGVgLYTIECAAAECBAhMvIAInPgjKnqCIrCISwRWctlOgAABAgQIECAwhQItI3Drtu3puz/YVqR0xMEr0nNnlhftibxYBGae/t33PpA+8KHr0sXvfWvab9+Vs7u8EpgJaBkBAgQIECBAgMDUCrSOwKv+6l/SHfduz/I65rDl6W0nP08EZmn9dJEIXABr0+Ob09lrL0/f/PZ307HHHJWuWH+OCCwYMEsJECBAgAABAgSmX2CpRuDWrdvShZdek773/Yd3+jq/3wDdyQ1//T/9pykCs8/QK4HZVBYSIECAAAECBAgsMYGlHoGPP/Fk+tXXvTqdfuqJvZO7/sZb0udvujU9sfkpEbjEZrnodkRgEZfFBAgQIECAAAECS0hgqUfgr/zSq9IX//br6b2/+8beqb3/f3widf/tY5/63E4R2MXhBZdc3Vtz2knHp4vOOzPNzKxIl310Q3ryyS1p85NPpRu+sDGtOnj/9JFL3p2OfNGqiZwCbwfNPJb5IjBzu2UECBAgQIAAgWqBp7fvSP94/9bqx1lqD7BsWUr7b/92WvHsvZbarY3kfvY77BUjeZxWD9L9YJhW3xPYfzvomte/rveW0O7X4Yce2Pvf3T8v+/CG2QjsAnDDZ2+a/fcu/I447JDeq4fd//7LL26cDb9u7cbb75yNxFZ2udcRgZlSXgnMhLKMAAECBAgQGKvA39+3PW34atlPThzrE5qABz9g5V7pXas3poNuP2UCns0EPYVly9MPf/HW9PTzjql+Ukv9lcAuAn/uiEPTuvdfmVY+7zm9VwS/c8/3ZyNwn7337n3v4PGvfNnsW0Zvu+OuXhR2rwZe8cd/0TM+96w1vX8O/l73SuGk/RKBmSciAjOhLCNAgAABAgTGKiACd+UVgfOMnAhc8GNx8JXA1ccd3XtFr//qXhdy/VcC+xHYvdVz8Ff/LaEicEHq6VwgAqfz3DxrAgQIECCw1AREoAjMnmkRuCDVcAQObpgrArtXDLtYHP7VxWP3yyuBC5JPx4LBvyKi/4zf/JunzR6wvydwOs7RsyRAgAABAktFQASKwOxZFoELUuVGYPf3hA9/T2C39zM3/E16w2mv9XbQBaWX2AIRuMQO1O0QIECAAIEJFxCBIjB7REXgglQlEdg92OBPB+3+/X3nv3n2B8N4JXBB7qWzQAQunbN0JwQIECBAYBoERKAIzJ5TEZhNFW2hHwxTeeIisBLQdgIECBAgQKBIQASKwOyBmeII/O4Pyn4C7hEHr0jPnVmeTRN9oQisnAARWAloOwECBAgQIFAkIAJFYPbATGkEZt+fhXssIAL3mO6nG0VgJaDtBAgQIECAQJGACBSB2QMjArOpoi0UgZUnLgIrAW0nQIAAAQIEigREoAjMHhgRmE0VbaEIrDxxEVgJaDsBAgQIECBQJCACRWD2wIjAbKpoC0Vg5YmLwEpA2wkQIECAAIEiAREoArMHRgRmU0VbKAIrT1wEVgLaToAAAQIECBQJiEARmD0wIjCbKtpCEVh54iKwEtB2AgQIECBAoEhABIrA7IGZ0gjcum172vLDb2XfZrdw5oCXpn1mVhTtibxYBFaevgisBLSdAAECBAgQKBIQgSIwe2CmOAJ3fOW30j4PXJd1q1sP/rW044RPi8AsrZ8uEoEFWHMtFYGVgLYTIECAAAECRQIiUARmD4wIXJDqtjvuSpd9eEO6Yv05ab99V/bWX/bRDb1/nnvWmt4/Nz2+Oa17/5XpPe84Ix35olULPuY0LBCBlackAisBbSdAgAABAgSKBESgCMweGBG4INVw4HX/fvbay9Phhx6YLjrvzDQzsyLNFYoLPvCELxCBlQckAisBbSdAgAABAgSKBESgCMweGBG4INXWrdvShZdek9a8/nVp9XFHp7vvfSD9+ee/nJ58ckt64+kn9V75u/7GW9I99z84+8pg90rh1Z+8offYb/7N02b/e7fur26+rfffb974zd4/P/YHa9MtX/vW7Pru37vr9H91ey645Orev5520vGz4dn9942335lWPvc56bq/+NLsYw3uXfDmdrNABNbopZREYCWg7QQIECBAgECRgAgUgdkDIwKzqAYjr/vf3a8u+k58zct7wdZF3xGHHZJOP/XEXhB2cda9Stj96gLykIP274Vg93sf+vifp49c8u7ZeOwCrx9+g3u7Vxi7f9/w2Ztm34o6fJ3BvaN+NVIEZo3G/ItEYCWg7QQIECBAgECRgAgUgdkDIwKzqLrA6mKsC7s//szn00knvio98tgTvVfwfufX//3s9wOuOviAXvQd/8qX9YKw+zUYZ3/95W/MBuJcbyMdXLvP3nvP+Vj953Hjl76202N1r1B+4EPXpYvf+9bZ713Murl5FonAGj2vBFbq2U6AAAECBAiUCohAEZg9MyIwi6r/fYFn/sapvRh87+++MW16bHP6xPVf6MXe/7z2z3rx1Q+3/ltHuwcfjLM9icAbvrBxp+fYf0uoCMw6usVb5JXAxbN3ZQIECBAgEFFABIrA7LkXgVlU/e8LPPaYo9JTW7ams37r9an7b90rbz/7r16YfvjIY723e/bXjfKVwMGgHHyyw28d9Upg1lG2WyQC21m7EgECBAgQIJCSCBSB2R8HIjCbqv8DWt53/ptn3+rZ/wEwg/9t8Pv4+q8MDn5PYP/7BRd6O2j311EMf09gF5mfueFv0htOe23ySmD20S3OQhG4OO6uSoAAAQIEogqIQBGYPfsiMJuq+369N71z/ewPcek2dv9t3cVXzv6gl/6D7e6ng5ZEYPd4gz8dtPv3fnB6JTD76BZnoQhcHHdXJUCAAAECUQVEoAjMnn0RmE0VbaEfDFN54iKwEtB2AgQIECBAoEhABIrA7IGZ4gjc8sNvZd9mt3DmgJemfWZWFO2JvFgEVp6+CKwEtJ0AAQIECBAoEhCBIjB7YKY0ArPvz8I9FhCBe0z3040isBLQdgIECBAgQKBIQASKwOyBEYHZVNEWisDKExeBlYC2EyBAgAABAkUCIlAEZg+MCMymirZQBFaeuAisBLSdAAECBAgQKBIQgSIwe2BEYDZVtIUisPLERWAloO0ECBAgQIBAkYAIFIHZAyMCs6miLRSBlScuAisBbSdAgAABAgSKBESgCMweGBGYTRVtoQisPHERWAloOwECBAgQIFAkIAJFYPbAiMBsqmgLRWDliYvASkDbCRAgQIAAgSIBESgCswdGBGZTRVsoAitPXARWAtpOgAABAgQIFAmIQBGYPTAiMJsq2kIRWHniIrAS0HYCBAgQIECgSEAEisDsgRGB2VTRForAyhMXgZWAthMgQIAAAQJFAiJQBGYPjAjMpoq2UARWnrgIrAS0nQABAgQIECgSEIEiMHtgRGA2VbSFIrDyxEVgJaDtBAgQIECAQJGACBSB2QMjArOpoi0UgZUnLgIrAW0nQIAAAQIEigREoAjMHhgRmE0VbaEIrDxxEVgJaDsBAgQIECBQJCACRWD2wIjAbKpoC0Vg5YmLwEpA2wkQIECAAIEiAREoArMHRgRmU0VbKAIrT1wEVgLaToAAAQIECBQJiEARmD0wIjCbKtpCEVh54iKwEtB2AgQIECBAoEhABIrA7IERgdlU0RaKwMoTF4GVgLYTIECAAAECRQIiUARmD4wIzKaKtlAEVp64CKwEtJ0AAQIECBAoEhCBIjB7YERgNlW0hSEj8LY77kpveuf63lkfe8xR6Yr156T99l0579lf9tEN6epP3jDnehEY7UPG/RIgQIAAgcUVEIEiMHsCRWA2VbSF4SLw7nsfSOvWX5UuXvuWdOSLVqXrb7wlbbz9znTReWemmZkVu5z/8O8P/7sIjPYh434JECBAgMDiCohAEZg9gSIwmyrawnAR2EXcPfc/mM49a03vrIejcHgAulcBu1/99d2riJd9eMPsq4ciMNqHjPslQIAAAQKLKyACRWD2BIrAbKpoC8NF4HDUbXp8czp77eXp3LevSauPO3qX8+8i8W3nfzCd8ivH90Kw23/EYYek0089sbdWBEb7kHG/BAgQIEBgcQVEoAjMnkARmE0VbWHICByMuIUicOvWbenCS69Jjz/xZPrbW7+1y/cQbt22PdrMuF8CBAgQIEBgkQS2P7MjffWuH6dPfeXHi/QMJvOyB6zcK73r1RvTQV8/ZTKf4GI9q2XL06O/dFt6zsHHVj+DmRXLqx/DA0yOQMgI7Pj7b+9cKAKHX/nr3k664bM3zb4d9NHN2ybnND0TAgQIECBAYEkL7NiR0u13b0uf/oqvPwYPuheBqzemg24XgTt9ACxbnn50wq1pr/1+vvrj4mdW7vqzM6of1AMsmkC4CCz5nsD+q4BrXv+62beKDn8PobeDLtrsujABAgQIEAgp4O2gux67CJznQ8HbQUN+jsi56XARuNBPBx1+pa97JfDBHz4y+9NDh39fBOaMmTUECBAgQIDAqAREoAjMniURmE0VbWG4COwOeHd/T+Bw5PVfDbzhCxt7szH89wqKwGgfMu6XAAECBAgsroAIFIHZEygCs6miLQwZgaM8ZBE4Sk2PRYAAAQIECCwkIAJF4EIzMvv7IjCbKtpCEVh54iKwEtB2AgQIECBAoEhABIrA7IERgdlU0RaKwMoTF4GVgLYTIECAAAECRQIiUARmD4wIzKaKtlAEVp64CKwEtJ0AAQIECBAoEhCBIjB7YERgNlW0hSKw8sRFYCWg7QQIECBAgECRgAgUgdkDIwKzqaItFIGVJy4CKwFtJ0CAAAECBIoERKAIzB4YEZhNFW2hCKw8cRFYCWg7AQIECBAgUCQgAkVg9sCIwGyqaAtFYOWJi8BKQNsJECBAgACBIgERKAKzB0YEZlNFWygCK09cBFYC2k6AAAECBAgUCYhAEZg9MCIwmyraQhFYeeIisBLQdgIECBAgQKBIQASKwOyBEYHZVNEWisDKExeBlYC2EyBAgAABAkUCIlAEZg+MCMymirZQBFaeuAisBLSdAAECBAgQKBIQgSIwe2BEYDZVtIUisPLERWAloO0ECBAgQIBAkYAIFIHZAyMCs6miLRSBlScuAisBbSdAgAABAgSKBESgCMweGBGYTRVtoQisPHERWAloOwECBAgQIFAkIAJFYPbAiMBsqmgLRWDliYvASkDbCRAgQIAAgSIBESgCswdGBGZTRVsoAitPXARWAtpOgAABAgQIFAmIQBGYPTAiMJsq2kIRWHniIrAS0HYCBAgQIECgSEAEisDsgRGB2VTRForAyhMXgZWAthMgQIAAAQJFAiJQBGYPjAjMpoq2UARWnrgIrAS0nQABAgQIECgSEIEiMHtgRGA2VbSFIrDyxEVgJaDtBAgQIECAQJGACBSB2QMjArOpoi0UgZUnLgIrAW0nQIAAAQIEigREoAjMHhgRmE0VbaEIrDxxEVgJaDsBAgQIECBQJCACRWD2wIjAbKpoC0Vg5YmLwEpA2wkQIECAAIEiAREoArMHRgRmU0VbKAIrT1wEVgLaToAAAQIECBQJiEARmD0wIjCbKtpCEVh54iKwEtB2AgQIECBAoEhABIrA7IERgdlU0RaKwMoTF4GVgLYTIECAAAECRQIiUARmD4wIzKaKtlAEVp64CKwEtJ0AAQIECBAoEhCBIjB7YERgNlW0hSKw8sRFYCWg7QQIECBAgECRgAgUgdkDIwKzqaItFIGVJy4CKwFtJ0CAAAECBIoERKAIzB4YEZhNFW2hCKw8cRFYCWg7AQIECBAgUCQgAkVg9sCIwGyqaAtFYOWJi8BKQNsJECBAgACBIgERKAKzB0YEZlNFWygCK09cBFYC2k6AAAECBAgUCYhAEZg9MCIwmyraQhFYeeIisBLQdgIECBAgQKBIQASKwOyBEYHZVNEWisDKExeBlYC2EyBAgAABAkUCIlAEZg+MCMymirZQBFaeuAisBLSdAAECBAgQKBIQgSIwe2BEYDZVtIUisPLERWAloO0ECBAgQIBAkYAIFIHZAyMCs6miLRSBlScuAisBbSdAgAABAgSKBESgCMweGBGYTRVtoQisPHERWAloOwECBAgQIFAkIAJFYPbAiMBsqmgLRWDliYvASkDbCRAgQIAAgSIBESgCswdGBGZTRVsoAitPXARWAtpOgAABAgQIFAmIQBGYPTAiMJsq2kIRWHniIrAS0HYCBAgQIECgSEAEisDsgRGB2VTRFoaMwNvuuCu96Z3re2d97DFHpSvWn5P223flvGe/deu2dOGl16QbvrCxt+Z95785nX7qib3/LQKjfci4XwIECBAgsLgCIlAEZk+gCMymirYwXATefe8Dad36q9LFa9+SjnzRqnT9jbekjbffmS4678w0M7Nil/PvB+Dxr3zZbPgNLhKB0T5k3C8BAgQIEFhcAREoArMnUARmU0VbGC4Cu+i75/4H07lnremd9XAUDg/A8Prh3xeB0T5k3C8BAgQIEFhcAREoArMnUARmU0VbGC4CL/voht4Z9yNw0+Ob09lrL0/nvn1NWn3c0bucf7f+6k/eMPvfVx28f/rIJe/uvYrY/RKB0T5k3C8BAgQIEFhcAREoArMnUARmU0VbGDICjzjskNm3du4uAvtvBV3z+tfNBmL3yuCGz940+32Ejz35k2gz434JECBAgACBRRLYsWNH+rvv/CR9+is/XqRnMJmXPWDlXuldqzemg24/ZTKf4GI9q2XL0yMn3JaW7//z1c/gBc99dvVjeIDJEQgZgR1/ziuBc0XgcDQ+tfXpyTlNz4QAAQIECBBY0gLPPLMjbfynbelTInCnc+5F4Ks3poO+LgJ3glm2PD36S7elmQNfXv1x8ZyZZ1U/hgeYHIFwEVj6PYHd20GHXzlc9/4r03vecUbvLaHeDjo5w+yZECBAgACBCALeDrrrKXslcJ7J93bQCJ8S9ugew0XgQj8ddPjtnt1fJ7Hu4itnvw9w+KeJisA9mjubCBAgQIAAgT0UEIEiMHt0RGA2VbSF4SKwO+Dd/T2BwxHYre/+2wWXXN2bjeG/V1AERvuQcb8ECBAgQGBxBUSgCMyeQBGYTRVtYcgIHOUhi8BRanosAgQIECBAYCEBESgCF5qR2d8XgdlU0RaKwMoTF4GVgLYTIECAAAECRQIiUARmD4wIzKaKtlAEVp64CKwEtJ0AAQIECBAoEhCBIjB7YERgNlW0hSKw8sRFYCWg7QQIECBAgECRgAgUgdkDIwKzqaItFIGVJy4CKwFtJ0CAAAECBIoERKAIzB4YEZhNFW2hCKw8cRFYCWg7AQIECBAgUCQgAkVg9sCIwGyqaAtFYOWJi8BKQNsJECBAgACBIgERKAKzB0YEZlNFWygCK09cBFYC2k6AAAECBAgUCYhAEZg9MCIwmyraQhFYeeIisBLQdgIECBAgQKBIQASKwOyBEYHZVNEWisDKExeBlYC2EyBAgAABAkUCIlAEZg+MCMymirZQBFaeuAisBLSdAAECBAgQKBIQgSIwe2BEYDZVtIUisPLERWAloO0ECBAgQIBAkYAIFIHZAyMCs6miLRSBlScuAisBbSdAgAABAgSKBESgCMweGBGYTRVtoQisPHERWAloOwECBAgQIFAkIAJFYPbAiMBsqmgLRWDliYvASkDbCRAgQIAAgSIBESgCswdGBGZTRVsoAitPXARWAtpOgAABAgQIFAmIQBGYPTAiMJsq2kIRWHniIrAScDfbn/XkP6WUdozvAlP8yE8/9yUT8ewff2pH+snTE/FUJu5JHPD8ZRP3nDwhAgSWhoAIFIHZkywCs6miLRSBlScuAisBF4jAA279d0JwyOiJl1ySnlp1xvjgCx65i8BP3LItbd4i1gfZVh+1PP3blz+7QNJSAgQI5AuIQBGYPS0iMJsq2kIRWHniIrASMCMC99r28PguMoWP/NjLr5m4CHzosWemUHJ8T/m1L32WCBwfr0cmEF5ABIrA7A8CEZhNFW2hCKw8cRFYCSgCiwFFYDFZ8w0isDm5CxIIJSACRWD2wIvAbKpoC0Vg5YmLwEpAEVgMKAKLyZpvEIHNyV2QQCgBESgCswdeBGZTRVsoAitPXARWAorAYkARWEzWfIMIbH2bA/cAACAASURBVE7uggRCCYhAEZg98CIwmyraQhFYeeIisBJQBBYDisBisuYbRGBzchckEEpABIrA7IEXgdlU0RaKwMoTF4GVgCKwGFAEFpM13yACm5O7IIFQAiJQBGYPvAjMpoq2UARWnrgIrAQUgcWAIrCYrPkGEdic3AUJhBIQgSIwe+BFYDZVtIUisPLERWAloAgsBhSBxWTNN4jA5uQuSCCUgAgUgdkDLwKzqaItFIGVJy4CKwFFYDGgCCwma75BBDYnd0ECoQREoAjMHngRmE0VbaEIrDxxEVgJKAKLAUVgMVnzDSKwObkLEgglIAJFYPbAi8BsqmgLRWDliYvASkARWAwoAovJmm8Qgc3JXZBAKAERKAKzB14EZlNFWygCK09cBFYCisBiQBFYTNZ8gwhsTu6CBEIJiEARmD3wIjCbKtpCEVh54iKwElAEFgOKwGKy5htEYHNyFyQQSkAEisDsgReB2VTRForAyhMXgZWAIrAYUAQWkzXfIAKbk7sggVACIlAEZg+8CMymirZQBFaeuAisBBSBxYAisJis+QYR2JzcBQmEEhCBIjB74EVgNlW0hSKw8sRFYCWgCCwGFIHFZM03iMDm5C5IIJSACBSB2QMvArOpoi0UgZUnLgIrAUVgMaAILCZrvkEENid3QQKhBESgCMweeBGYTRVtoQisPHERWAkoAosBRWAxWfMNIrA5uQsSCCUgAkVg9sCLwGyqaAtFYOWJi8BKQBFYDCgCi8mabxCBzcldkEAoAREoArMHXgRmU0VbKAIrT1wEVgKKwGJAEVhM1nyDCGxO7oIEQgmIQBGYPfAiMJsq2kIRWHniIrASUAQWA4rAYrLmG0Rgc3IXJBBKQASKwOyBF4HZVNEWisDKExeBlYAisBhQBBaTNd/wOyc8mX7uZx5vft1puODTzzlqGp6m50hgogVEoAjMHlARmE0VbaEIrDxxEVgJKAKLAUVgMVnzDV0E/psf/FZavuV7za89yRfc9oLXpE3HXjPJT9FzIzAVAiJQBGYPqgjMpoq2UARWnrgIrAQUgcWAIrCYrPmGfgSuePTm5tee5AtueeEZInCSD8hzmxoBESgCs4dVBGZTRVsoAitPfBQR+PDjO9IPHnum8pksve3HPP876fBvnJz22vbw0ru5ijsSgRV4jbaKwLmhRWCjAXSZJS8gAkVg9pCLwGyqaAtDRuBtd9yV3vTO9b2zPvaYo9IV689J++27csGz7+/72B+sTauPO7q3flQReMXnt6Zndiz4FEIt+L2T7xOBc5y4CJz8DwMRKAInf0o9w2kWEIEiMHt+RWA2VbSF4SLw7nsfSOvWX5UuXvuWdOSLVqXrb7wlbbz9znTReWemmZkV857/YDiKwDYfJiJwbmcR2Gb+aq4iAkVgzfzYS2AhAREoAheakdnfF4HZVNEWhovALvruuf/BdO5Za3pnPRyFcw1At+YDH7ounX/2b6R1778qnfv2NV4JbPCRIgJFYIMxG8slRKAIHMtgeVAC/19ABIrA7A8GEZhNFW1huAi87KMbemfcj8BNj29OZ6+9fKewGxyCwUjc7wUrd1n70Kat1TPz0KZn0h95O+gujhecfF86zPcE7uLy2LHXph8fekb13I3iATb9yzPpT2/Zlh7yPa07cYrA+SPw8eOuTcuWjWL6PAaBuAJ33PN02vDVbXEB5rjzA1buld61emM66PZTuAwKLFueHv7FW9Mzz39ptcvB+81UP4YHmByBkBF4xGGHpNNPPbF3CruLwO731r3/yvSed5zRe+voXGu3j+Ab+e763tb0hzdu8T2BQx8XF558XzpUBO7y2eKJV1ybZl7822n58sX/Svp7D29LV31xiwgcOqUzT3gqveoHb0x+OujOMFtWnZF2HP8nae8Vyyfn/wt6JgSmTGD79h3pln/Ykq778o+n7JmP9+l2EXjuqzemA78uAneSXrY8bTrx79LzVx1XfQDL91r8rzuqb8IDzAqEjMDu7nNeCexeBXzb+R9MDzz0yC4j0/++QD8YZnwfTd4OOret7wkc38yN6pG9Eji3pJ8OOqoJ8zjRBbwddNcJ8ErgPB8V3g4a/dPFvPcfLgL35HsC+3pzvRIoAsf3sSUCReD4pmu8jywCReB4J8yjRxcQgSIw+2NABGZTRVsYLgIX+umgXSRu+OxNc/61ESKw7YeHCBSBbSdudFcTgSJwdNPkkQjsKiACRWD2x4UIzKaKtjBcBHYHvLu/J1AETs6HgAgUgZMzjWXPRASKwLKJsZpAmYAIFIHZEyMCs6miLQwZgaM8ZG8HHaXmzo8lAkXg+KZrvI8sAkXgeCfMo0cXEIEiMPtjQARmU0VbKAIrT1wEVgLuZrsIFIHjm67xPrIIFIHjnTCPHl1ABIrA7I8BEZhNFW2hCKw8cRFYCSgCiwH9dNBisuYbRKAIbD50LhhKQASKwOyBF4HZVNEWisDKExeBlYAisBhQBBaTNd8gAkVg86FzwVACIlAEZg+8CMymirZQBFaeuAisBBSBxYAisJis+QYRKAKbD50LhhIQgSIwe+BFYDZVtIUisPLERWAloAgsBhSBxWTNN4hAEdh86FwwlIAIFIHZAy8Cs6miLRSBlScuAisBRWAxoAgsJmu+QQSKwOZD54KhBESgCMweeBGYTRVtoQisPHERWAkoAosBRWAxWfMNIlAENh86FwwlIAJFYPbAi8BsqmgLRWDliYvASkARWAwoAovJmm8QgSKw+dC5YCgBESgCswdeBGZTRVsoAitPXARWAorAYkARWEzWfIMIFIHNh84FQwmIQBGYPfAiMJsq2kIRWHniIrASUAQWA4rAYrLmG0SgCGw+dC4YSkAEisDsgReB2VTRForAyhMXgZWAIrAYUAQWkzXfIAJFYPOhc8FQAiJQBGYPvAjMpoq2UARWnrgIrAQUgcWAIrCYrPkGESgCmw+dC4YSEIEiMHvgRWA2VbSFIrDyxEVgJaAILAYUgcVkzTeIQBHYfOhcMJSACBSB2QMvArOpoi0UgZUnLgIrAUVgMaAILCZrvkEEisDmQ+eCoQREoAjMHngRmE0VbaEIrDxxEVgJKAKLAUVgMVnzDSJQBDYfOhcMJSACRWD2wIvAbKpoC0Vg5YmLwEpAEVgMKAKLyZpvEIEisPnQuWAoAREoArMHXgRmU0VbKAIrT1wEVgKKwGJAEVhM1nyDCBSBzYfOBUMJiEARmD3wIjCbKtpCEVh54iKwElAEFgOKwGKy5htEoAhsPnQuGEpABIrA7IEXgdlU0RaKwMoTF4GVgCKwGFAEFpM13yACRWDzoXPBUAIiUARmD7wIzKaKtlAEVp64CKwEFIHFgCKwmKz5BhEoApsPnQuGEhCBIjB74EVgNlW0hSKw8sRFYCWgCCwGFIHFZM03iEAR2HzoXDCUgAgUgdkDLwKzqaItFIGVJy4CKwFFYDGgCCwma75BBIrA5kPngqEERKAIzB54EZhNFW2hCKw8cRFYCSgCiwFFYDFZ8w0iUAQ2HzoXDCUgAkVg9sCLwGyqaAtFYOWJi8BKQBFYDCgCi8mabxCBIrD50LlgKAERKAKzB14EZlNFWygCK09cBFYCisBiQBFYTNZ8gwgUgc2HzgVDCYhAEZg98CIwmyraQhFYeeIisBJQBBYDisBisuYbRKAIbD50LhhKQASKwOyBF4HZVNEWisDKExeBlYAisBhQBBaTNd8gAkVg86FzwVACIlAEZg+8CMymirZQBFaeuAisBBSBxYAisJis+QYRKAKbD50LhhIQgSIwe+BFYDZVtIUisPLERWAloAgsBhSBxWTNN4hAEdh86FwwlIAIFIHZAy8Cs6miLRSBlScuAisBRWAxoAgsJmu+QQSKwOZD54KhBESgCMweeBGYTRVtoQisPHERWAkoAosBRWAxWfMNIlAENh86FwwlIAJFYPbAi8BsqmgLRWDliYvASkARWAwoAovJmm8QgSKw+dC5YCgBESgCswdeBGZTRVsoAitPXARWAorAYkARWEzWfIMIFIHNh84FQwmIQBGYPfAiMJsq2kIRWHniIrASUAQWA4rAYrLmG0SgCGw+dC4YSkAEisDsgReB2VTRForAyhMXgZWAIrAYUAQWkzXfIAJFYPOhc8FQAiJQBGYPvAjMpoq2UARWnrgIrAQUgcWAIrCYrPkGESgCmw+dC4YSEIEiMHvgRWA2VbSFIrDyxEVgJaAILAYUgcVkzTeIQBHYfOhcMJSACBSB2QMvArOpoi0UgZUnLgIrAUVgMaAILCZrvkEEisDmQ+eCoQREoAjMHngRmE0VbaEIrDxxEVgJKAKLAUVgMVnzDSJQBDYfOhcMJSACRWD2wIvAbKpoC0Vg5YmLwEpAEVgMKAKLyZpvEIEisPnQuWAoAREoArMHXgRmU0VbKAIrT1wEVgKKwGJAEVhM1nyDCBSBzYfOBUMJiEARmD3wIjCbKtrCkBF42x13pTe9c33vrI895qh0xfpz0n77rpzz7AfXdgtOO+n4dNF5Z6aZmRW99SJwfB8yv3fyfenwb5yc9tr28PguMoWPLAIn/9BEoAic/Cn1DKdZQASKwOz5FYHZVNEWhovAu+99IK1bf1W6eO1b0pEvWpWuv/GWtPH2O3cKu8Eh6H7/8EMPTKuPOzpt3botXXjpNemQg/ZP5561RgSO+aNFBM4NLALHPHgjeHgRKAJHMEYegsC8AiJQBGZ/eIjAbKpoC8NFYBd199z/4GzEDUfhQgMwHI1eCVxIbM9/XwSKwD2fnsXdKQJF4OJOoKsvdQERKAKzZ1wEZlNFWxguAi/76IbeGfdfydv0+OZ09trL07lvX9N7tW+hX8P7ReBCYnv++yJQBO759CzuThEoAhd3Al19qQuIQBGYPeMiMJsq2sKQEXjEYYek0089sXfWJRHYfX/gZR/esNP3EP7k6WeqZ+afvv/j9Ic3bknP7Kh+qCX1ABeefF861PcE7nKmTxx3bVrx4v+alu+1bNHP+/4f/SRd/aUt6aHH6j8OFv1mRvgEzjzhqfSqH7wxrXj05hE+6vQ/1JZVZ6Ttr/mTtPez95r+m3EHBBZJYPszO9KXv701XfflHy/SM5jMyx6wcq/0rldvTAd9/ZTJfIKL9ayWLU+PnnhbWnnIcdXP4NnP8rm7GnGCHiBkBHb+pa8EdgG47uIr00cueXfvewn7vx5+vP6T8A8e3Z7+6HNbReDQB8YFJ9+XDhOBu3y6eOzYa9O2w34jLVv8BkyPbt6e/uTmbSJw6JS8Ejj3/5fb8sIz0uZfuDYtm4ThnaD/R+ypECgR2LEjpTvu+Un69Fe2lWxb8mt7Ebh6YzrodhG402EvW55+dMKtace+L6uegQP33bv6MTzA5AiEi8A9+Z7A+QKwO0ZvBx3fMHs76Ny2fjDM+GZuVI8sAuePwE3HXjMqZo9DIKyAt4PuevQicJ4PB28HDft5YqEbDxeBC/100C4SN3z2ptm3fM71FtBBVBG40Ijt+e+LQBG459OzuDtFoAhc3Al09aUuIAJFYPaMi8BsqmgLw0Vgd8C7+3sChyOw+0EwV3/yhp3mYtXB+8++LVQEju9DRgSKwPFN13gfWQSKwPFOmEePLiACRWD2x4AIzKaKtjBkBI7ykEXgKDV3fiwRKALHN13jfWQRKALHO2EePbqACBSB2R8DIjCbKtpCEVh54iKwEnA320WgCBzfdI33kUWgCBzvhHn06AIiUARmfwyIwGyqaAtFYOWJi8BKQBFYDOgHwxSTNd8gAkVg86FzwVACIlAEZg+8CMymirZQBFaeuAisBBSBxYAisJis+QYRKAKbD50LhhIQgSIwe+BFYDZVtIUisPLERWAloAgsBhSBxWTNN4hAEdh86FwwlIAIFIHZAy8Cs6miLRSBlScuAisBRWAxoAgsJmu+QQSKwOZD54KhBESgCMweeBGYTRVtoQisPHERWAkoAosBRWAxWfMNIlAENh86FwwlIAJFYPbAi8BsqmgLRWDliYvASkARWAwoAovJmm8QgSKw+dC5YCgBESgCswdeBGZTRVsoAitPXARWAorAYkARWEzWfIMIFIHNh84FQwmIQBGYPfAiMJsq2kIRWHniIrASUAQWA4rAYrLmG0SgCGw+dC4YSkAEisDsgReB2VTRForAyhMXgZWAIrAYUAQWkzXfIAJFYPOhc8FQAiJQBGYPvAjMpoq2UARWnrgIrAQUgcWAIrCYrPkGESgCmw+dC4YSEIEiMHvgRWA2VbSFIrDyxEVgJaAILAYUgcVkzTeIQBHYfOhcMJSACBSB2QMvArOpoi0UgZUnLgIrAUVgMaAILCZrvkEEisDmQ+eCoQREoAjMHngRmE0VbaEIrDxxEVgJKAKLAUVgMVnzDSJQBDYfOhcMJSACRWD2wIvAbKpoC0Vg5YmLwEpAEVgMKAKLyZpvEIEisPnQuWAoAREoArMHXgRmU0VbKAIrT1wEVgKKwGJAEVhM1nyDCBSBzYfOBUMJiEARmD3wIjCbKtpCEVh54iKwElAEFgOKwGKy5htEoAhsPnQuGEpABIrA7IEXgdlU0RaKwMoTF4GVgCKwGFAEFpM13yACRWDzoXPBUAIiUARmD7wIzKaKtlAEVp64CKwEFIHFgCKwmKz5BhEoApsPnQuGEhCBIjB74EVgNlW0hSKw8sRFYCWgCCwGFIHFZM03iEAR2HzoXDCUgAgUgdkDLwKzqaItFIGVJy4CKwFFYDGgCCwma75BBIrA5kPngqEERKAIzB54EZhNFW2hCKw8cRFYCSgCiwFFYDFZ8w0iUAQ2HzoXDCUgAkVg9sCLwGyqaAtFYOWJi8BKQBFYDCgCi8mabxCBIrD50LlgKAERKAKzB14EZlNFWygCK09cBFYCisBiQBFYTNZ8gwgUgc2HzgVDCYhAEZg98CIwmyraQhFYeeIisBJQBBYDisBisuYbRKAIbD50LhhKQASKwOyBF4HZVNEWisDKExeBlYAisBhQBBaTNd8gAkVg86FzwVACIlAEZg+8CMymirZQBFaeuAisBBSBxYAisJis+QYRKAKbD50LhhIQgSIwe+BFYDZVtIUisPLERWAloAgsBhSBxWTNN4hAEdh86FwwlIAIFIHZAy8Cs6miLRSBlScuAisBRWAxoAgsJmu+QQSKwOZD54KhBESgCMweeBGYTRVtoQisPHERWAkoAosBRWAxWfMNIlAENh86FwwlIAJFYPbAi8BsqmgLRWDliYvASkARWAwoAovJmm8QgdMRgT964pnmszENF3zO3stS939+Ta6ACBSB2dMpArOpoi0UgZUnLgIrAUVgMaAILCZrvkEETkcE/tmt29I/fl8IDp7WwfsuS79+wgoR2PyzRtkFRaAIzJ4YEZhNFW2hCKw8cRFYCSgCiwFFYDFZ8w0icHoi8Bv/vL35fEzyBVcftTyddOyz08wKrwRO8jmJQBGYPZ8iMJsq2kIRWHniIrASUAQWA4rAYrLmG0SgCGw+dCO64PEvflZ6w34fSss04C6iWw75T2n7zOEjkq57GBEoArMnSARmU0VbKAIrT1wEVgKKwGJAEVhM1nyDCBSBzYduRBfsInDNyt9Pz7/74hE94tJ4mJ+s/Pn06Cv/lwic4OM8YOVe6V2rN6aDbj9lgp/lIjw1EbgI6NNxSRFYeU4isBJQBBYDisBisuYbRKAIbD50I7qgCJwbUgSOaMDG+DAicB5cETjGqZvuhxaBlecnAisBRWAxoAgsJmu+QQSKwOZDN6ILikAROKJRav4wIlAENh+6Kb+gCKw8QBFYCSgCiwFFYDFZ8w0iUAQ2H7oRXVAEisARjVLzhxGBIrD50E35BUVg5QGKwEpAEVgMKAKLyZpvEIEisPnQjeiCIlAEjmiUmj+MCBSBzYduyi8oAisPUARWAorAYkARWEzWfIMIFIHNh25EFxSBInBEo9T8YUSgCGw+dFN+QRFYeYAisBJQBBYDisBisuYbRKAIbD50I7qgCBSBIxql5g8jAkVg86Gb8guKwIwDvP7GW9IFl1zdW3naSceni847M83MrOj9uwjMANzDJb938n3p8G+cnPba9vAePsLS3CYCJ/9cRaAInPwpnfsZikAROK2zKwJF4LTO7mI9bxG4gPxtd9yVLvvwhnTF+nPSfvuuTJd9dENvx7lnrRGBY55aETg3sAgc8+CN4OFFoAgcwRgtykOIQBG4KIM3gouKQBE4gjEK9RAicIHj7qLviMMOSaefemJv5XAUeiVwfB8vIlAEjm+6xvvIIlAEjnfCxvfoIlAEjm+6xvvIIlAEjnfClt6ji8DdnOnWrdvShZdek45/5ctmI/Duex9I69ZflS5e+5Z05ItWeTvoGD8mRKAIHON4jfWhRaAIHOuAjfHBRaAIHON4jfWhRaAIHOuALcEHF4EZEbjm9a9Lq487urdyOAJHMRP/cN+W9L/v2DaKh1pSj/Gfj/nndMC971tS9zSKm3n6hf8h7fOS307PWr5sFA9X9Rj3/nBb+rOvbal6jKW4+TX/anN6xY/euRRvre6elq9Iy37xT9PMiuV1jzOC3Vu3bU/XfPHJtO3pHSN4tKXzEAc+f1n6tZnfT8v/5a6lc1MjupPtx12SnnfAUSN6tD1/mKe370g3//1T6Zv3Pb3nD7IEd+797JTe8LNfTc+7/8oleHd1t7T1JRek/Q57Rd2D2L3kBERgRgTu7pXAJTcRbogAAQIECBAgQIAAgSUtIAIXON6FvidwSU+HmyNAgAABAgQIECBAYMkJiMAFjnShnw665CbCDREgQIAAAQIECBAgsKQFRGDG8e7u7wnM2G7JgEBnufH2O3f6uxYBESBAgMDiCwz/FUiL/4w8AwLjFTDz4/X16JMtIAIn+3ym7tltenxzOnvt5emb3/5u77mvOnj/9JFL3t37SardLxE4dUe6ZJ9w9yr/m965fqf7e9/5b579ScBL9sbdWAiB4fk+7aTjd/rDt7k+F/uCOMRoTPxNDn8dMfyEd/d5uvRrDDM/8ePgCY5RQASOETfaQ/c/cXc/TXXw71XsvtD+2B+s7f2E1dJP0NEM3W87geG3enc/+fdt538wXbzurbM/Dbjds3ElAqMT6GZ73cVX7vQHcN0Xu7f9n7vSFevPSfvtu3LOz8W+IB7dGXik0Qj0v6449+1rsj4vl36NYeZHc04eZToFROB0nttEPuv5PvkO/vcbv/S19Fc339Z7/jdv/Gbvn/1A7P734Ftvh3+v+2T94A8fSd/7/sO9Vxq7Vxkvv+i/p49v+Hy64Qsb53zV8YJLrp61GrzORAJ6Uk0FhiNwrr8XdL63gvf/qpiX/esj0nV/8aXe837zb56WTnzNy2dfXez+/dyz1vR+r/8xsPK5z5ldPziP/Wt3c9z96v9J91x/Jc3w826K5mITLzDXHHdPevC/v+JlR/X+wOOBhx7p3c+xxxzVi8NrP/W59OSTW9LmJ5+a83PqfHPa/0K9e7Xx45/+XO8xB98BMvFonuDECswXgd3XA1d/8obZz73d59r+H+QNz/WmxzbvNO+Dn5tF4MQevSfWQEAENkCOcIn5vvDo7r37xPyBD12XLn7vW9Nff/kb6UMf//PZLxAGv6DdZ++902du+Jv0htNem2ZmVvS+cN7w2Ztm/+R6+E+yu3//yy9unH2swU/m3fPZ3WNFOBP3uHuBuV4JXLf+qnTx2rf03r481w+F6v4Q4qLzzkwPPPSj3hcV7/hv/7H3qnf/i49TfuX4XvgNx1s/JvvhNzz3F156TTrkoP17e7sveta9/8r0nnec0Xsegz+heHcfZ86bQP/z7eAcD6p0c3jP/Q/25my+t4MOfk4dXNM9znxzut8LVva+DeDwQw/0/d7GcKQCc0Xg7uZyrrn+/E23pRf/7KG9z6fD7/gQgSM9Lg82ZQIicMoObFKfbv+L0+6toN3bPgd/DX5B/I07v7vTD4bZ3Vs9hr+QHv5kPfzJfndvA5nrFZVJtfS82ggMf89U/9WQ7q1y3a/heRucoe73B7/QHp7j4X8fns3BPxjp/pR6+Iv2wfAbXtv/A5X+82yj5SrTIjA4L8MzMvyujOEf0jU8893HSPcHcf0/+JhvTn/5hFf0IjD3LXvTYul5Lr7A8OfSuf4gbPAP1bo/aN7dD58b3i8CF/+MPYPFExCBi2e/pK5c8krg4Cfo4XgcfjvH4A+WKY3A3T3WksJ3M3skMPiFQ/cAw1/EDv8doYOv0I06Agffmte/mf5bQgc/Rrq3Qvdfydmjm7ZpyQvs7g+8cl4J7ID6b2MejsD55lQELvmxWrQbnC8CB//AefjdRsMROPw25u5m+p9fReCiHa0LT4CACJyAQ1gqTyH3ewIHP0EPfoLf/wXP3+kHc9S8Eth/u17/h3x4JXCpTNno7mP47Z4L/Z2g43wlcKFX97rn9sEPf7p38/23q45OwiMtJYGc7wns3sKc89NBhyNwvjkt/eEdS8nbvYxXoPaVwP7HQ//t9l4JHO95efTpEhCB03VeE/1s9+Sngw5+IdKF2/D3ZA3+hLuSVwIXeqyJhvTkmgjM9QNW+j98qHv727f+8e6dfsLi4O8Nz1fN20G774Ud/F6r7ua74Py///z99KuvW92z6D++77lqMhpTf5Gcnw463/zP90pg99/nm9NX/8LR3g469VMzmTcw3/cE9n9ewPDnz4V+4Nfw1yleCZzMc/es2giIwDbOYa6S8/cEDv7Ezrm+D6v/E79efsyRO73yURKB3Q+WGfzpYcOPFeZA3Oi8AnN9Edz/U+JuUxeC3U+z7c/r4N+zNvzKck0Edt+3Nfx2peG/X3N333PriAnMJbDQ3xM4OHODPx10vgjsPqfON6f9HwzjewLN4qgFSn46aHftueb6O/d8f/anNnefW/f/mX3Tf3n9L/d+qJcIHPWJebxpEhCB03RanisBAiEFuuj8xPVf6P3E0O6Lcb8IECBAgAABAjUCIrBGz14CuqXO6QAABLBJREFUBAg0EBj+ITUNLukSBAgQIECAwBIWEIFL+HDdGgECBAgQIECAAAECBIYFRKCZIECAAAECBAgQIECAQCABERjosN0qAQIECBAgQIAAAQIERKAZIECAAAECBAgQIECAQCABERjosN0qAQIECBAgQIAAAQIERKAZIECAAAECBAgQIECAQCABERjosN0qAQIECBAgQIAAAQIERKAZIECAAAECBAgQIECAQCABERjosN0qAQIECBAgQIAAAQIERKAZIECAAAECBAgQIECAQCABERjosN0qAQIECBAgQIAAAQIERKAZIECAAAECBAgQIECAQCABERjosN0qAQIECBAgQIAAAQIERKAZIECAAAECBAgQIECAQCABERjosN0qAQIECBAgQIAAAQIERKAZIECAAAECBAgQIECAQCABERjosN0qAQIECBAgQIAAAQIERKAZIECAAAECBAgQIECAQCABERjosN0qAQIECBAgQIAAAQIERKAZIECAAAECBAgQIECAQCABERjosN0qAQIECBAgQIAAAQIERKAZIECAAAECBAgQIECAQCABERjosN0qAQIECBAgQIAAAQIERKAZIECAAAECBAgQIECAQCABERjosN0qAQIECBAgQIAAAQIERKAZIECAAAECBAgQIECAQCABERjosN0qAQIECBAgQIAAAQIERKAZIECAAAECBAgQIECAQCABERjosN0qAQIECBAgQIAAAQIERKAZIECAAAECBAgQIECAQCABERjosN0qAQIECBAgQIAAAQIERKAZIECAAAECBAgQIECAQCABERjosN0qAQIECBAgQIAAAQIERKAZIECAAAECBAgQIECAQCABERjosN0qAQIECBAgQIAAAQIERKAZIECAAAECBAgQIECAQCABERjosN0qAQIECBAgQIAAAQIERKAZIECAAAECBAgQIECAQCABERjosN0qAQIECBAgQIAAAQIERKAZIECAAAECBAgQIECAQCABERjosN0qAQIECBAgQIAAAQIERKAZIECAAAECBAgQIECAQCABERjosN0qAQIECBAgQIAAAQIERKAZIECAAAECBAgQIECAQCABERjosN0qAQIECBAgQIAAAQIERKAZIECAAAECBAgQIECAQCABERjosN0qAQIECBAgQIAAAQIERKAZIECAAAECBAgQIECAQCABERjosN0qAQIECBAgQIAAAQIERKAZIECAAAECBAgQIECAQCABERjosN0qAQIECBAgQIAAAQIERKAZIECAAAECBAgQIECAQCABERjosN0qAQIECBAgQIAAAQIERKAZIECAAAECBAgQIECAQCABERjosN0qAQIECBAgQIAAAQIERKAZIECAAAECBAgQIECAQCABERjosN0qAQIECBAgQIAAAQIERKAZIECAAAECBAgQIECAQCABERjosN0qAQIECBAgQIAAAQIERKAZIECAAAECBAgQIECAQCABERjosN0qAQIECBAgQIAAAQIERKAZIECAAAECBAgQIECAQCABERjosN0qAQIECBAgQIAAAQIERKAZIECAAAECBAgQIECAQCABERjosN0qAQIECBAgQIAAAQIE/h/OTnqaoKBC8wAAAABJRU5ErkJggg==", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "data = [\n", " go.Bar(x=df.index, y=df[\"Men\"], marker=dict(color=\"cornflowerblue\"), name=\"Men\"),\n", " go.Bar(x=df.index, y=df[\"Women\"], marker=dict(color=\"orange\"), name=\"Women\"),\n", "]\n", "layout = go.Layout(xaxis=dict(title=\"Candidate\"), yaxis=dict(title=\"Percentage\"))\n", "fig = go.Figure(data=data)\n", "fig.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12" } }, "nbformat": 4, "nbformat_minor": 4 }